The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's...The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.展开更多
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and e...The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and expensive. In this paper, the authors present the development of a prototype monitoring system for power line inspection in South Africa. The developed prototype monitoring system collects data (information) from the overhead power lines, is remotely accessible and fits into a power line robot. The prototype monitoring system makes use ofa PandaBoard (SBC) with GPS receiver and 5 MP camera to collect data. Hardware fatigue is the biggest problem faced on the overhead power lines and is captured by means of the 5 MP camera and is displayed on a website hosted by the PandaBoard via Wi-Fi. The monitoring system has low power consumption, is light weight, compact and easily collects data. The data obtained from the prototype monitoring system was satisfactory and provides an improved solution for monitoring power lines for Eskom in South Africa.展开更多
In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-ey...In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.展开更多
Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering ...Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.展开更多
In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by ...In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by means of helicopter inspection flights and foot patrols, which are infrequent and expensive. In this paper, the authors present the design of a prototype power line crawler (inspection robot) for the monitoring of these overhead power lines in South Africa. The designed prototype power line crawler is capable of driving on the wire, balancing on the wire and is capable of maneuvering past certain obstacles found on the overhead power cables. The prototype power line crawler is designed to host a monitoring system that monitors the power line as the inspection robot drives on it. Various experimental tests were performed and are presented in this paper, showing the capability of performing these tasks. This prototype inspection robot ensures a platform for future development in this area.展开更多
To address complex work conditions incredibly challenging to the stability of power line inspection robots,we design a walking mechanism and propose a variable universe fuzzy control(VUFC)method based on multi‐work c...To address complex work conditions incredibly challenging to the stability of power line inspection robots,we design a walking mechanism and propose a variable universe fuzzy control(VUFC)method based on multi‐work conditions for flying‐walking power line inspection robots(FPLIRs).The contributions of this paper are as follows:(1)A flexible pressing component is designed to improve the adaptability of the FPLIR to the ground line slope.(2)The influence of multi‐work conditions on the FPLIR's walking stability is quantified using three condition parameters(i.e.,slope,slipping degree and swing angle),and their measurement methods are proposed.(3)The VUFC method based on the condition parameters is proposed to improve the walking stability of the FPLIR.Finally,the effect of the VUFC method on walking stability of the FPLIR is teste.The experimental results show that the maximum climbing angle of the FPLIR reaches 29.1°.Compared with the constant pressing force of 30 N,the average value of slipping degree is 0.93°,increasing by 35%.The maximum and average values of robot's swing angle are reduced by 46%and 54%,respectively.By comparing with fuzzy control,the VUFC can provide a more reasonable pressing force while maintaining the walking stability of the FPLIR.The proposed walking mechanism and the VUFC method significantly improve the stability of the FPLIR,providing a reference for structural designs and stability controls of inspection robots.展开更多
The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of secur...The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.展开更多
The influence of streamline bending inertia force on power loss is investigated.In order to analyze the combined effect of the inertia force and the path on the power loss,the accumulation effect expression of the ine...The influence of streamline bending inertia force on power loss is investigated.In order to analyze the combined effect of the inertia force and the path on the power loss,the accumulation effect expression of the inertia force on its path is derived.The calculation result shows that the accumulation effect of the unit inertia force on its path depends merely upon the velocity magnitude and the path scroll angle.As long as they are given,the accumulation effect is a constant and independent of the intermediate path.An important conclusion drawn is that the maximum inertia force rather than its accumulation effect plays a predominant role in the power loss.Thus,a new design method,minimum streamline curvature method,is proposed.Fluid particle movement inside a hydrodynamic torque converter can be regarded as curved movement on the circular surface and decomposed into a meridional component and a circumferential component.Each meridional streamline is designed to be close to a circular arc,while each torus streamline is constructed with a circular arc and a straight line segment.Based on the meridional streamline equation,the torus streamline equation and a streamlined thickness function,a blade surface equation of three-element centripetal-turbine hydrodynamic torque converter can be obtained.展开更多
基金Project(50575165) supported by the National Natural Science Foundation of ChinaProjects(2006AA04Z202, 2005AA2006-1) supported by the National High-Tech Research and Development Program of China+1 种基金Project(20813) supported by the Natural Science Foundation of Hubei Province, ChinaProject(20045006071-28) supported by the Youth Chenguang Project of Science and Technology of Wuhan City, China
文摘The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
文摘The national energy supplier (Eskom in South Africa) supplies electricity through thousands-of-kilometers of overhead power lines. The current methods of inspection of these overhead power lines are infrequent and expensive. In this paper, the authors present the development of a prototype monitoring system for power line inspection in South Africa. The developed prototype monitoring system collects data (information) from the overhead power lines, is remotely accessible and fits into a power line robot. The prototype monitoring system makes use ofa PandaBoard (SBC) with GPS receiver and 5 MP camera to collect data. Hardware fatigue is the biggest problem faced on the overhead power lines and is captured by means of the 5 MP camera and is displayed on a website hosted by the PandaBoard via Wi-Fi. The monitoring system has low power consumption, is light weight, compact and easily collects data. The data obtained from the prototype monitoring system was satisfactory and provides an improved solution for monitoring power lines for Eskom in South Africa.
基金Project(2006AA04Z202)supported by the National High Technology Research and Development Program of ChinaProject(51105281)supported by the National Natural Science Foundation of China
文摘In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.
基金supported by State Grid Corporation of China,Projects under Grant 520626200031National Natural Science Foundation of China,No.51877200。
文摘Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.
文摘In South Africa, electricity is supplied through thousands-of-kilometers of overhead power cables, which is owned by Eskom the national energy supplier. Currently monitoring of these overhead power cables are done by means of helicopter inspection flights and foot patrols, which are infrequent and expensive. In this paper, the authors present the design of a prototype power line crawler (inspection robot) for the monitoring of these overhead power lines in South Africa. The designed prototype power line crawler is capable of driving on the wire, balancing on the wire and is capable of maneuvering past certain obstacles found on the overhead power cables. The prototype power line crawler is designed to host a monitoring system that monitors the power line as the inspection robot drives on it. Various experimental tests were performed and are presented in this paper, showing the capability of performing these tasks. This prototype inspection robot ensures a platform for future development in this area.
基金National Natural Science Foundation of China,Grant/Award Numbers:62063030,62163032Financial Science and Technology Program of the XPCC,Grant/Award Numbers:2021DB003,2022CB002‐07,2022CB011High‐level Talent Project of Shihezi University,Grant/Award Numbers:RCZK2018C31,RCZK2018C32。
文摘To address complex work conditions incredibly challenging to the stability of power line inspection robots,we design a walking mechanism and propose a variable universe fuzzy control(VUFC)method based on multi‐work conditions for flying‐walking power line inspection robots(FPLIRs).The contributions of this paper are as follows:(1)A flexible pressing component is designed to improve the adaptability of the FPLIR to the ground line slope.(2)The influence of multi‐work conditions on the FPLIR's walking stability is quantified using three condition parameters(i.e.,slope,slipping degree and swing angle),and their measurement methods are proposed.(3)The VUFC method based on the condition parameters is proposed to improve the walking stability of the FPLIR.Finally,the effect of the VUFC method on walking stability of the FPLIR is teste.The experimental results show that the maximum climbing angle of the FPLIR reaches 29.1°.Compared with the constant pressing force of 30 N,the average value of slipping degree is 0.93°,increasing by 35%.The maximum and average values of robot's swing angle are reduced by 46%and 54%,respectively.By comparing with fuzzy control,the VUFC can provide a more reasonable pressing force while maintaining the walking stability of the FPLIR.The proposed walking mechanism and the VUFC method significantly improve the stability of the FPLIR,providing a reference for structural designs and stability controls of inspection robots.
基金supported in part by Science and Technology Projects of Electric Power Research Institute of State Grid Jiangsu Electric Power Co.,Ltd.(J2021171).
文摘The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.
基金Sponsored by Henan Province Key Scientific and Technological Program(0424260038)
文摘The influence of streamline bending inertia force on power loss is investigated.In order to analyze the combined effect of the inertia force and the path on the power loss,the accumulation effect expression of the inertia force on its path is derived.The calculation result shows that the accumulation effect of the unit inertia force on its path depends merely upon the velocity magnitude and the path scroll angle.As long as they are given,the accumulation effect is a constant and independent of the intermediate path.An important conclusion drawn is that the maximum inertia force rather than its accumulation effect plays a predominant role in the power loss.Thus,a new design method,minimum streamline curvature method,is proposed.Fluid particle movement inside a hydrodynamic torque converter can be regarded as curved movement on the circular surface and decomposed into a meridional component and a circumferential component.Each meridional streamline is designed to be close to a circular arc,while each torus streamline is constructed with a circular arc and a straight line segment.Based on the meridional streamline equation,the torus streamline equation and a streamlined thickness function,a blade surface equation of three-element centripetal-turbine hydrodynamic torque converter can be obtained.