期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A method for prediction of unstable deformation in hot forging process by simulation
1
作者 鲁世强 李鑫 +2 位作者 王克鲁 刘诗彪 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3739-3747,共9页
A method is proposed for prediction of the unstable deformation in hot forging process using both the determined thermomechnical parameter windows of the unstable deformation zones and finite element simulation. Takin... A method is proposed for prediction of the unstable deformation in hot forging process using both the determined thermomechnical parameter windows of the unstable deformation zones and finite element simulation. Taking Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy as the testing material, the thermomechnical parameter windows of the unstable deformation zones for the Ti-alloy are integrated into a commercial finite element simulation software platform. The distribution and variation of the unstable deformation zones of the alloy in hot compression process are simulated and predicted using the tailor-made finite element codes in the finite element platform. The simulation results tally with the physical experiments and the proposed method for simulation and prediction of the unstable deformation is thus verified and its efficiency is validated. 展开更多
关键词 instability map unstable deformation instability deformation simulation Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy
下载PDF
Characterization of deformation stability of in-situ TiB2/6351 composites during hot compression based on Murty criterion 被引量:4
2
作者 郭胜利 李德富 +1 位作者 陈东 王浩伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期267-275,共9页
In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And t... In situ TiB2 reinforced 6351 Al alloy composites were subjected to compression testing at strain rates and temperatures ranging from 0.001 to 10 s -1 and from 300 to 550?欲espectively,using Gleeble-1500D system.And the associated microstructural transformations and instability phenomena were studied by observations of the optical and transmission electron microscope.The power dissipation efficiency and instability parameter were calculated following the dynamic material model and plotted with the temperature and logarithm of strain rate to obtain processing maps for strains of 0.2,0.4,and 0.6.The processing maps present the instability zones at higher strain rates.The result shows that with increasing strain,the instability zones enlarge.The microstructural examination shows that the interface separates even the particle cracks or aligns along the shear direction of the adiabatic shear band in the instability zones.Two domains of higher efficiencies correspond to dynamic recovery and dynamic recrystallization during the hot deformation.Using the processing maps,the optimum processing parameters of stain rates and temperatures can be chosen for effective hot deformation of TiB2/6351 composites. 展开更多
关键词 TiB2/6351 composites processing maps dynamic recrystallization flow instability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部