In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel p...ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.展开更多
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design...The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.展开更多
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
基金Sponsored by National Natural Science Foundation of China(60572098)
文摘ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
文摘The structure of the acousto-optic spectrum analyzer was investigated including the RF amplifying circuit, the optical structures and the postprocessing circuit, and the design idea of the module was applied to design the spectrum analyzer. The modularization spectrum analyzer takes on the performance stabilization and higher reliability, and according to different demands, the different modules can be used. The spectrum analyzer had such performances as the detecting frequency precision of 1 MHz, the detecting frequency error of 0.58 MHz, detecting responsivity of 90 dBm and bandwidth of 50 MHz.
基金supported by the National Natural Science Foundation of China (No.12202190)Outstanding Postdoctoral Program in Jiangsu Province (No.2022ZB233)Research Start-up Funding from Nanjing University of Aeronautics and Astronautics (No.90YAH21131)。