In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour...In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.展开更多
The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing ...The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing process of composite laminates, are the common and major reason of causing the random distributions of the static strength and the fatigue life. And there is a correlative relation between the two distributions. With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material, the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained. And then the model which is used to describe the distributions of fatigue life of composites, based on their distributions of static strength, is set up. This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates. The experimental data of three kinds of composite laminates are employed to verify this model, and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.展开更多
With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fa...With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fatigue life at the moments when the pitting appears and reaches failure criterion were obtained at four stressing levels respectively. The distribution rule of fatigue life were distinguished, and the distribution parameters were estimated by statistical analysis. Based on that, the R-S-N curves with confidence 95% of contacting fatigue on gear tooth flank were evaluated. Therefore, the basic data were provided for the reliability design of the gears and prediction of their life.展开更多
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi...In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.展开更多
To study the effects of loading paths and stress states on rock strength and deformation, marble specimens were axially compressed to various displacements under a confining pressure (CP) firstly, and then the damaged...To study the effects of loading paths and stress states on rock strength and deformation, marble specimens were axially compressed to various displacements under a confining pressure (CP) firstly, and then the damaged specimens were recompressed under another CP. The bearing capacity of a marble specimen depends merely on CP at the stage of ductile deformation, and it has no relation with the loading history when CP keeps constant or increases. However, the damaged specimen turns into brittle when it is recompressed uniaxially or at a lower CP, and the Young’s modulus and strength are lower than those of a dense specimen. The increasing ratio of triaxial strength to CP has a close relation with the areas of fissures in the damaged specimens but not the internal friction angle. Material strength and bearing capacity are two different conceptions for rocks. Material strength decreases continually as the plastic deformation increases; however, the bearing capacity is determined by both the stress state and the material strength.展开更多
Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore ...Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore dilution. To this end, the backfill in a stope must possess a minimum strength to remain self-standing during mining of an adjacent stope. This required strength is often estimated using a solution proposed by Mitchell and co-workers, which was based on a limit equilibrium analysis of a wedge exposed by the open face. In this paper, three dimensional numerical simulations have been performed to assess the behavior of the wedge model. A new limit equilibrium solution is proposed, based on the backfill displacements obtained from the simulations. Comparisons are made between the proposed solution and experimental and numerical modeling results. Compared with the previous solution, a better agreement is obtained between the new solution and experimental results for the required cohesion and factor of safety. For large scale(field) conditions, the results also show that the required strength obtained from the proposed solution corresponds quite well to the simulated backfill response.展开更多
Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important par...Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,展开更多
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)...The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.展开更多
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi...The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.展开更多
A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. ...A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. The method was adopted in an experiment conducted in the South Yellow Sea of China. The seafloor surface was relatively smooth and covered by a small quantity of shell fragments, as observed through a digital camera system. Sampling data showed that the main component of the sediment at this experimental site was fine sand. In this paper, we detail the calculation method. Preliminary results of backscattering strength as a function of grazing angle(20?–70?) in the frequency range of 6–24 kHz are presented. The measured backscattering strength increased with the grazing angle and changed more rapidly at large grazing angles(60?–70?). A comparison of the data at different frequencies reveals that the measured backscattering strength substantially rises with the increase of acoustic frequency. A fitting curve of Lambert's law against the measured data shows that the backscattering strength deviates from Lambert's law at large grazing angles.展开更多
The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundar...The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundary value problem defined on a representative elementary volume(REV). The principle of nonlinear homogenization is illustrated based on the case of a solid phase having a Green’s strength criterion. An original refinement of the so-called secant method(based on two reference strains) is also provided. The paper also describes the main feature of the Gurson’s model which implements the principle of limit analysis on a conceptual model of hollow sphere. The last part of the paper gives some ideas concerning poromechanical couplings.展开更多
Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on pa...Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on particular point was analyzed. Conclusion is obtained that obviously conservative to evaluate open hole and joint strength by hole-edge stress. Based on these, high and nor-mal temperature strength test of typical circular shaft was completed, proving that comprehensive joint performance can be significantly improved by appropriately optimized design.展开更多
Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influ...Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influences the plastic or cohesive zone at the crack tip in parent body. The mathematical model for load line opening of the crack near the interface in linear elastic regime involves singular integrals. The paper presents explicit solution of these integrals with the help of Cauchy’s principal value theorem. Cases of thin and thick welds between the materials are investigated. Solutions of the integrals are well substantiated. Final results are provided in a consolidated form.展开更多
Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint mo...Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.展开更多
基金Financial support comes from China National Natural Science Foundation(Grant No.51974352)as well as from China University of Petroleum(East China)(Grant Nos.2018000025 and 2019000011)。
文摘In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.
文摘The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article. It is concluded that the inner original defects, which derived from the manufacturing process of composite laminates, are the common and major reason of causing the random distributions of the static strength and the fatigue life. And there is a correlative relation between the two distributions. With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material, the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained. And then the model which is used to describe the distributions of fatigue life of composites, based on their distributions of static strength, is set up. This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates. The experimental data of three kinds of composite laminates are employed to verify this model, and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.
文摘With the method of group test, fourty pairs of carburization-quenching gears made from 16NCD13 steel for aerocraft were tested to research the contacting fatigue strength on tooth flank. As a result, the samples of fatigue life at the moments when the pitting appears and reaches failure criterion were obtained at four stressing levels respectively. The distribution rule of fatigue life were distinguished, and the distribution parameters were estimated by statistical analysis. Based on that, the R-S-N curves with confidence 95% of contacting fatigue on gear tooth flank were evaluated. Therefore, the basic data were provided for the reliability design of the gears and prediction of their life.
基金Project(51008007)supported by the National Natural Science Foundation of ChinaProject(2013318J01100)supported by the Science and Technology Project of Ministry of Communications,China
文摘In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils.
基金Supported by the National Natural Science Foundation of China (10572047)
文摘To study the effects of loading paths and stress states on rock strength and deformation, marble specimens were axially compressed to various displacements under a confining pressure (CP) firstly, and then the damaged specimens were recompressed under another CP. The bearing capacity of a marble specimen depends merely on CP at the stage of ductile deformation, and it has no relation with the loading history when CP keeps constant or increases. However, the damaged specimen turns into brittle when it is recompressed uniaxially or at a lower CP, and the Young’s modulus and strength are lower than those of a dense specimen. The increasing ratio of triaxial strength to CP has a close relation with the areas of fissures in the damaged specimens but not the internal friction angle. Material strength and bearing capacity are two different conceptions for rocks. Material strength decreases continually as the plastic deformation increases; however, the bearing capacity is determined by both the stress state and the material strength.
基金financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the partners of Research Institute on Mines and the Environment (RIME UQAT-Polytechnique http://rime-irme.ca)
文摘Backfill is increasingly used in underground mines to reduce the surface impact from the wastes produced by the mining operations. But the main objectives of backfilling are to improve ground stability and reduce ore dilution. To this end, the backfill in a stope must possess a minimum strength to remain self-standing during mining of an adjacent stope. This required strength is often estimated using a solution proposed by Mitchell and co-workers, which was based on a limit equilibrium analysis of a wedge exposed by the open face. In this paper, three dimensional numerical simulations have been performed to assess the behavior of the wedge model. A new limit equilibrium solution is proposed, based on the backfill displacements obtained from the simulations. Comparisons are made between the proposed solution and experimental and numerical modeling results. Compared with the previous solution, a better agreement is obtained between the new solution and experimental results for the required cohesion and factor of safety. For large scale(field) conditions, the results also show that the required strength obtained from the proposed solution corresponds quite well to the simulated backfill response.
文摘Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,
基金Funded by the Construction of Key Disciplines for Young Teacher Science Foundation of the Southwest Petroleum University(No.P209)the Research Fund for the Doctoral Program of Higher Education(No.20105121120002)the National Natural Science Foundation of China(Nos.51004084 and 51374177)
文摘The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly.
基金the National Key Basic Research and Development Program of China under grant No.2004CB619104.
文摘The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.
基金supported in part by the National Natural Science Foundation of China (Nos. 41606081, 4152 7809, and 41330965)in part by the Opening Fund of Pilot National Laboratory for Marine Science and Technology (Qingdao) (No. QNLM2016ORP0209)in part by the Taishan Scholar Project Funding (No. tspd20161007)
文摘A method of obtaining bottom backscattering strength by employing an omnidirectional projector and omnidirectional hydrophone is proposed. The backscattering strength is extracted from monostatic backscattering data. The method was adopted in an experiment conducted in the South Yellow Sea of China. The seafloor surface was relatively smooth and covered by a small quantity of shell fragments, as observed through a digital camera system. Sampling data showed that the main component of the sediment at this experimental site was fine sand. In this paper, we detail the calculation method. Preliminary results of backscattering strength as a function of grazing angle(20?–70?) in the frequency range of 6–24 kHz are presented. The measured backscattering strength increased with the grazing angle and changed more rapidly at large grazing angles(60?–70?). A comparison of the data at different frequencies reveals that the measured backscattering strength substantially rises with the increase of acoustic frequency. A fitting curve of Lambert's law against the measured data shows that the backscattering strength deviates from Lambert's law at large grazing angles.
文摘The present paper aims at giving some general ideas concerning the micromechanical approach of the strength of a porous material. It is shown that its determination theoretically amounts to solving a nonlinear boundary value problem defined on a representative elementary volume(REV). The principle of nonlinear homogenization is illustrated based on the case of a solid phase having a Green’s strength criterion. An original refinement of the so-called secant method(based on two reference strains) is also provided. The paper also describes the main feature of the Gurson’s model which implements the principle of limit analysis on a conceptual model of hollow sphere. The last part of the paper gives some ideas concerning poromechanical couplings.
文摘Research on the opening hole and connecting problem of C/C composite material was conducted. The strength characteristics of plate with opening hole were tested and the applicability of strength criteria focused on particular point was analyzed. Conclusion is obtained that obviously conservative to evaluate open hole and joint strength by hole-edge stress. Based on these, high and nor-mal temperature strength test of typical circular shaft was completed, proving that comprehensive joint performance can be significantly improved by appropriately optimized design.
文摘Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials differ from those of the crack in a homogenous body. Interface body of different strength influences the plastic or cohesive zone at the crack tip in parent body. The mathematical model for load line opening of the crack near the interface in linear elastic regime involves singular integrals. The paper presents explicit solution of these integrals with the help of Cauchy’s principal value theorem. Cases of thin and thick welds between the materials are investigated. Solutions of the integrals are well substantiated. Final results are provided in a consolidated form.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333 and 42277147)。
文摘Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.