We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
The contribution of higher harmonics to the movement of a micro rectangular cantilever in tapping mode AFM is investigated. The dependence between the phase lag of the higher harmonic components and tip-sample separat...The contribution of higher harmonics to the movement of a micro rectangular cantilever in tapping mode AFM is investigated. The dependence between the phase lag of the higher harmonic components and tip-sample separation are found to be an order of magnitude higher than the base one, reflecting an increasing sensitivity to local variations of surface properties compared to the normal phase signal The strong correlation between the higher harmonic amplitude and average sample deformation implies that the higher harmonic amplitude can be taken to monitor the tapping force or as feedback variable to fulfill a constant repulsive force mode.展开更多
The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-...The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.展开更多
The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shi...The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shift over CdSe QDs, while no obvious signal on DNA is detected, suggesting that DNA molecules is an electrical insulator.展开更多
We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X...We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X-ray diffraction reveals that the synthesized product is monoclinic gallium oxide, it is further confirmed by electron diffraction of transmission electron microscope, and its morphology through the observation using scanning electron microscope reveals thatβ-Ga2O3 nanobelts with a breadth less than lOOnm and length of severai micrometers are synthesized under low oxygen pressure, while the nano/microbelts are synthesized under high oxygen pressure. Room-temperature oxygen sensing is tested under at 254 nm illumination and it is found that the current decreases quickly first and then slowly with oxygen pressure from low to high.展开更多
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
文摘The contribution of higher harmonics to the movement of a micro rectangular cantilever in tapping mode AFM is investigated. The dependence between the phase lag of the higher harmonic components and tip-sample separation are found to be an order of magnitude higher than the base one, reflecting an increasing sensitivity to local variations of surface properties compared to the normal phase signal The strong correlation between the higher harmonic amplitude and average sample deformation implies that the higher harmonic amplitude can be taken to monitor the tapping force or as feedback variable to fulfill a constant repulsive force mode.
基金Supported by the National Natural Science Foundation of China and the National Basic Research Program of China
文摘The maximum refrigeration power dependence on the doping density in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/ n-BaTiO3 system and in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is obtained respectively based on the opto-thermionic refrigeration model. The results show that the maximum refrigeration power in the p-BaTiO3/BaTiO3/SrTiO3/BaTiO3/n-BaTiO3 system increases dramatically with the increase of doping density from 1.0×1018 cm-3 to 5.0×1019 cm-3 while that in the p-AlGaAs/AlGaAs/GaAs/AlGaAs/n-AlGaAs system is nearly a constant. It is found that the different Auger coefficients and the competition between radiative power and dissipation power lead to the different behavior of the maximum refrigeration power dependence on the doping density of the two systems.
基金Supported by the National Natural Science Foundation under Grant No 10604034, the Natural Science Foundation of Zhejiang Province (Y606309), Ningbo Natural Science Foundation (2006A610046), and K. C. Wong Magna Fund in Ningbo University.
文摘The polarizabilities of DNA in transverse direction and CdSe semiconductor quantum dots (QDs) deposited on mica surface are compared by means of electrostatic force microscopy (EFM). We observe clear EFM-phase shift over CdSe QDs, while no obvious signal on DNA is detected, suggesting that DNA molecules is an electrical insulator.
文摘We prepare the gallium oxide (β-Ga2O3) nanomaterials from gallium and oxygen by thermal evaporation in the argon atmosphere and research their oxygen sensing under UV illumination with different oxygen pressures. X-ray diffraction reveals that the synthesized product is monoclinic gallium oxide, it is further confirmed by electron diffraction of transmission electron microscope, and its morphology through the observation using scanning electron microscope reveals thatβ-Ga2O3 nanobelts with a breadth less than lOOnm and length of severai micrometers are synthesized under low oxygen pressure, while the nano/microbelts are synthesized under high oxygen pressure. Room-temperature oxygen sensing is tested under at 254 nm illumination and it is found that the current decreases quickly first and then slowly with oxygen pressure from low to high.