Purpose: Although patient-related factors affect surgical outcomes, preoperative functional status is not measured by any cardiac risk score. Functional status can, however, be objectively measured using validated out...Purpose: Although patient-related factors affect surgical outcomes, preoperative functional status is not measured by any cardiac risk score. Functional status can, however, be objectively measured using validated outcome tools such as the Late-Life Function and Disability Instrument (LLFDI). The purpose of this study was to determine 1) if there was a change over time in functional status, as measured by the LLFDI, in patients who underwent elective cardiac surgery, and if so, 2) what specific aspect(s) of functional status changed. Methods: A prospective longitudinal study of one year was conducted on elective cardiac surgery patients (n = 43) using the self-reported LLFDI, which measures Disability Frequency (frequency of participation in social tasks), Disability Limitation (ability to participate in social tasks) and Function Total (ease in performing routine activities). Higher scores indicate increased function and decreased disability. LLFDI scores were compared at three times (preoperative, six-week and one-year postoperative) using repeated measures ANOVA. Post hoc pairwise comparison was conducted for specific interactions. Results: Both Function Total and Disability Frequency significantly changed over time (p = 0.047 and p = 0.013, respectively). Specifically, patients’ function level was significantly higher one-year postoperative compared to preoperative (M difference = +3.48, SE = 1.48, p = 0.026). Likewise, Disability Frequency scores were significantly higher (i.e. more active) at one-year postoperative versus preoperative (M difference= +5.98, SE = 2.19, p = 0.033). Disability Limitation scores were not significantly different between any time points (p > 0.05). Conclusion: By one-year postoperative, patients demonstrated increased ease in their routine physical activities and were more participatory in social life tasks. Individuals who underwent elective cardiac surgery took more than six weeks to detect notable improvement in functional status, which was expected with a sternotomy approach. This study provides support for the use of the LLFDI as an effective tool to capture functional status in the cardiac population. These findings may assist cardiac patients in recovery timeline expectations.展开更多
This paper presents a quantitative approach to operational risk modeling and estimation of safety integrity levels,required for the deep water electric work class remotely operated vehicle with reference to ROSUB6000 ...This paper presents a quantitative approach to operational risk modeling and estimation of safety integrity levels,required for the deep water electric work class remotely operated vehicle with reference to ROSUB6000 developed by the National Institute of Ocean Technology,India.ROSUB6000 is used for carrying out bathymetric surveys,gas hydrate surveys,poly-metallic nodule exploration,salvage operations,and meeting emergency response situations.The system is expected to be in operation for a period of 300 h per year,and has to be extremely safe and reliable.Methods and models for the quantitative assessment of operational safety and estimation of safety integrity levels for ROV are seldom available in the deep water intervention industry.The safety instrumented functions implemented in the ROV should be able to meet the SIL requirements of specific mission.This study indicates that the required safety factors are implemented into the design of the state-of-the-art ROV ROSUB 6000,considering IEC 61508/61511 recommendations on Health,Safety and Environment and it is found that the system is able to meet the required SIL for seven identified functions.This paper gives the design and safety engineers in the ROV industry,an overview of the numerical operational risk assessment methods and safety-centered ROV engineering.展开更多
文摘Purpose: Although patient-related factors affect surgical outcomes, preoperative functional status is not measured by any cardiac risk score. Functional status can, however, be objectively measured using validated outcome tools such as the Late-Life Function and Disability Instrument (LLFDI). The purpose of this study was to determine 1) if there was a change over time in functional status, as measured by the LLFDI, in patients who underwent elective cardiac surgery, and if so, 2) what specific aspect(s) of functional status changed. Methods: A prospective longitudinal study of one year was conducted on elective cardiac surgery patients (n = 43) using the self-reported LLFDI, which measures Disability Frequency (frequency of participation in social tasks), Disability Limitation (ability to participate in social tasks) and Function Total (ease in performing routine activities). Higher scores indicate increased function and decreased disability. LLFDI scores were compared at three times (preoperative, six-week and one-year postoperative) using repeated measures ANOVA. Post hoc pairwise comparison was conducted for specific interactions. Results: Both Function Total and Disability Frequency significantly changed over time (p = 0.047 and p = 0.013, respectively). Specifically, patients’ function level was significantly higher one-year postoperative compared to preoperative (M difference = +3.48, SE = 1.48, p = 0.026). Likewise, Disability Frequency scores were significantly higher (i.e. more active) at one-year postoperative versus preoperative (M difference= +5.98, SE = 2.19, p = 0.033). Disability Limitation scores were not significantly different between any time points (p > 0.05). Conclusion: By one-year postoperative, patients demonstrated increased ease in their routine physical activities and were more participatory in social life tasks. Individuals who underwent elective cardiac surgery took more than six weeks to detect notable improvement in functional status, which was expected with a sternotomy approach. This study provides support for the use of the LLFDI as an effective tool to capture functional status in the cardiac population. These findings may assist cardiac patients in recovery timeline expectations.
文摘This paper presents a quantitative approach to operational risk modeling and estimation of safety integrity levels,required for the deep water electric work class remotely operated vehicle with reference to ROSUB6000 developed by the National Institute of Ocean Technology,India.ROSUB6000 is used for carrying out bathymetric surveys,gas hydrate surveys,poly-metallic nodule exploration,salvage operations,and meeting emergency response situations.The system is expected to be in operation for a period of 300 h per year,and has to be extremely safe and reliable.Methods and models for the quantitative assessment of operational safety and estimation of safety integrity levels for ROV are seldom available in the deep water intervention industry.The safety instrumented functions implemented in the ROV should be able to meet the SIL requirements of specific mission.This study indicates that the required safety factors are implemented into the design of the state-of-the-art ROV ROSUB 6000,considering IEC 61508/61511 recommendations on Health,Safety and Environment and it is found that the system is able to meet the required SIL for seven identified functions.This paper gives the design and safety engineers in the ROV industry,an overview of the numerical operational risk assessment methods and safety-centered ROV engineering.