期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Study on the Economic Insulation Thickness of the Buried Hot Oil Pipelines Based on Environment Factors 被引量:1
1
作者 Shihao Fan Mingliang Chang +3 位作者 Shouxi Wang Qing Quan Yong Wang Dan Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期45-59,共15页
It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investm... It is important to determine the insulation thickness in the design of the buried hot oil pipelines.The economic thickness of the insulation layer not only meets the needs of the project but also maximizes the investment and environmental benefits.However,as a significant evaluation,the environmental factors haven’t been considered in the previous study.Considering this factor,the mathematical model of economic insulation thickness of the buried hot oil pipelines is built in this paper,which is solved by the golden section method while considering the costs of investment,operation,environment,the time value of money.The environmental cost is determined according to the pollutant discharge calculated through relating heat loss of the pipelines to the air emission while building the model.The results primarily showed that the most saving fuel is natural gas,followed by LPG,fuel oil,and coal.The fuel consumption for identical insulation thickness is in the order:coal,fuel oil,LPG,and natural gas.When taking the environmental costs into account,the thicker the economic insulation layer is,the higher cost it will be.Meanwhile,the more pollutant discharge,the thicker the economic insulation layer will be. 展开更多
关键词 Buried hot oil pipelines economic insulation thickness ENVIRONMENT
下载PDF
The Impact of Optimum Insulation Thickness of External Walls to Energy Saving and Emissions of CO2 and SO2 for Turkey Different Climate Regions
2
作者 Ö. Altan Dombayci Harun Kemal Ozturk +2 位作者 Öner Atalay Şengül Güven Acar Eylem Yilmaz Ulu 《Energy and Power Engineering》 2016年第11期327-348,共23页
In this study, the optimum insulation thickness of the external walls of the housing and it’s energy saving and environmental impact in the provinces—Ardahan, Aydin, Eskisehir and Samsun—located in four different c... In this study, the optimum insulation thickness of the external walls of the housing and it’s energy saving and environmental impact in the provinces—Ardahan, Aydin, Eskisehir and Samsun—located in four different climate regions of Turkey was calculated for the expanded polystyrene and polyurethane insulation materials. Natural gas and coal were selected as fuels. Ardahan in the coldest climate region and Aydin in the hottest climate region, for the coal and optimum thickness of expanded polystyrene and polyurethane insulation materials, the reduction of CO<sub>2</sub> and SO<sub>2</sub> emissions. In the study, the relations between annual energy cost saving and insulation thickness are given. The value of energy cost saving increases up to optimum insulation thickness and beyond this level, the energy cost saving is decreased. For coal and optimum thickness of expanded polystyrene and polyurethane insulation materials, the energy cost savings was higher for the cold climate regions when it was compared with the hot climate regions. 展开更多
关键词 Optimum Insulation thickness Energy Saving Environmental Impact
下载PDF
Optimal Thermal Insulation Thickness in Isolated Air-Conditioned Buildings and Economic Analysis
3
作者 Mousa M. Mohamed 《Journal of Electronics Cooling and Thermal Control》 2020年第2期23-45,共23页
The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effe... The removal building heat load and electrical power consumption by air conditioning system are proportional to the outside conditions and solar radiation intensity. Building construction materials has substantial effects on the transmission heat through outer walls, ceiling and glazing windows. Good thermal isolation for buildings is important to reduce the transmitted heat and consumed power. The buildings models are constructed from common materials with 0 - 16 cm of thermal insulation thickness in the outer walls and ceilings, and double-layers glazing windows. The building heat loads were calculated for two types of walls and ceiling with and without thermal insulation. The cooling load temperature difference method, <em>CLTD</em>, was used to estimate the building heat load during a 24-hour each day throughout spring, summer, autumn and winter seasons. The annual cooling degree-day, <em>CDD</em> was used to estimate the optimal thermal insulation thickness and payback period with including the solar radiation effect on the outer walls surfaces. The average saved energy percentage in summer, spring, autumn and winter are 35.5%, 32.8%, 33.2% and 30.7% respectively, and average yearly saved energy is about of 33.5%. The optimal thermal insulation thickness was obtained between 7 - 12 cm and payback period of 20 - 30 month for some Egyptian Cities according to the Latitude and annual degree-days. 展开更多
关键词 Building Heat Load Cooling Load Temperature Difference Energy Saving Power Consumption Annual Cooling Degree-Day Optimal Thermal Insulation thickness Payback Period
下载PDF
Optimum insulation thickness and exergy savings of building walls in Bamenda: a comparative analysis
4
作者 Fodoup Cyrille Vincelas Fohagui Yemeli Wenceslas Kohole +2 位作者 Njimboh Henry Alombah Derek Ajesam Asoh Ghislain Tchuen 《Energy Storage and Saving》 2024年第1期60-70,共11页
The goal of this study is to examine the energetic,entransy,and exergetic methodologies employed to estimate the ideal insulation thickness for construction walls in terms of cost and ecological impact.To achieve thes... The goal of this study is to examine the energetic,entransy,and exergetic methodologies employed to estimate the ideal insulation thickness for construction walls in terms of cost and ecological impact.To achieve these goals,the life cycle cost analysis-based insulating thicknesses of the various methods are evaluated along with the overall costs,yearly cost reductions,and total expenses.The fuel consumption,CO_(2) emissions,and ecological effects are then compared using an environmental analysis based on the three methodologies.The savings of hollow concrete brick(HCB),compressed stabilized earth brick(CSEB),and sundried earth brick(SEB)walls are evaluated along with the insulation thicknesses in terms of cost and ecological impact.As a result,it is determined that the exergetic technique is better suited for optimizing insulating thickness.For CSEB,SEB,and HCB walls,the economic ideal insulation thicknesses are 0.01 m,0.016 m,and 0.02 m,with yearly financial savings of 5$⋅m^(-2),7.5$⋅m^(-2),and 9$⋅m^(-2).For CSEB,SEB,and HCB walls,accordingly,the ecological optimal insulation thicknesses are 0.023 m,0.032 m,and 0.040 m,with net savings of exergetic ecological impact equal to 59 mPts⋅m^(-2),55 mPts⋅m^(-2),and 51 mPts⋅m^(-2). 展开更多
关键词 Insulation thickness Environmental impact Entransy EXERGY EXERGOECONOMIC
原文传递
One-Dimensional Study of Thermal Behavior of Typha Panel: Spectroscopy Characterization of Heat Exchange Coefficient on Front Face 被引量:1
5
作者 Sokhna Khadidiatou Ben Thiam Alassane Ba +7 位作者 Mamadou Babacar Ndiaye Issa Diagne Youssou Traore Seydou Faye Cheikh Thiam Pape Touty Traore Ablaye Fame Gregoire Sissoko 《Journal of Sustainable Bioenergy Systems》 2020年第2期52-61,共10页
Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with ... Convective heat transfer coefficients, materializing exchanges between solid wall (here typha) and its environment, influence its behavior under excitation pulse. Temperature of wall and its density of flow vary with these coefficients according to its thickness (in depth). This study therefore focuses on the evaluation of convective heat transfer coefficient on front face and the optimal insulation thickness. 展开更多
关键词 TYPHA Heat Transfer Coefficients SPECTROSCOPY Optimal Insulation thickness
下载PDF
Energy and Emission Reduction Potential for Bank ATM Units in India
6
作者 Hemant Kumar Singh Ravi Prakash Karunesh Kumar Shukla 《Open Journal of Energy Efficiency》 2016年第4期107-120,共15页
With the growing economy of India, banking sector growth has led to installation of thousands of Automatic Teller Machines (ATMs) throughout the country. ATMs provide 24 × 7 services as well as operate at low-tem... With the growing economy of India, banking sector growth has led to installation of thousands of Automatic Teller Machines (ATMs) throughout the country. ATMs provide 24 × 7 services as well as operate at low-temperature ranges of cooling, hence have high operating energy costs. Insulating an ATM’s envelope is not a prevalent technique in India. In the present study, an effort has been made to determine the optimum insulation thickness for three different insulation materials for the typical ATM envelope in four different climatic zones of India. Life cycle savings and payback periods for various insulation materials are also evaluated. Further, these optimally insulated ATM envelopes can be integrated with grid connected rooftop solar PV systems. The energy saving and emissions reduction potential due to these two interventions have been estimated on the national basis. Altogether in the four selected climate zones, energy saving of 17% - 30% provides the annual economic benefit of Indian National Rupees (Rs.) 3570 million with annual carbon reduction potential of about 0.60 million tCO<sub>2</sub>. From this study, it is observed that properly insulated ATMs integrated with rooftop solar PV systems, can significantly reduce the energy costs as well as carbon emissions in India’s context. 展开更多
关键词 Life Cycle Cost Optimum Insulation thickness Life Cycle Saving Solar PV Payback Period Carbon Emissions
下载PDF
Optimum insulation thickness for the sandwich structure livestock buildings external envelopes in different climate regions of China 被引量:1
7
作者 Yang Wang Baoming Li Weichao Zheng 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第1期29-41,共13页
Determining the optimum insulation thicknesses of external envelopes for livestock buildings are one of the most effective metrics to decrease energy requirements.This study was carried out to determine the optimum in... Determining the optimum insulation thicknesses of external envelopes for livestock buildings are one of the most effective metrics to decrease energy requirements.This study was carried out to determine the optimum insulation thicknesses for livestock buildings in different climate zones,to examine the effects of insulation thickness and material(foam glass,mineral wool,expanded polystyrene,foamed polyurethane,foamed polyvinyl chloride,and expanded polyethylene)on life cycle total cost,life cycle savings,and payback period.The finishing pig houses and laying hen buildings with sandwich wall structures(color steel laminboard)in five typical cities were studied using the degree-days method with economic models.Optimal insulation thicknesses ranged from 0.05 m to 0.25 m and 0.02 m to 0.24 m in finishing pig houses and poultry buildings,respectively;the life cycle total costs ranged from 16.49 to 37.98$/m2 and 13.37 to 36.84$/m2;the life cycle savings ranged from 29.13 to 220.60$/m2 and 0 to 202.13$/m2;and the payback period ranged from 1.11 to 5.81 years and 1.19 to 20.76 years,respectively.Foamed polyurethane provided the highest life cycle savings,while foam glass had the lowest.In this research,the insulation thicknesses for the sandwich structure livestock buildings external envelopes are optimized,and the energy saving can be obtained by using proper insulation thickness in different regions.Furthermore,it can increase the knowledge about energy consumption in the livestock buildings and the results can be also a useful tool for farmers. 展开更多
关键词 livestock building insulation material optimum insulation thicknesses DEGREE-DAYS life cycle total cost life cycle saving payback period
原文传递
Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems 被引量:1
8
作者 Fating LI Pengfei JIE +1 位作者 Zhou FANG Zhimei WEN 《Frontiers in Energy》 SCIE CSCD 2021年第1期170-185,共16页
The insulation thickness(IT)of double pipes buried in the soil(DPBIS)for district heating(DH)systems was optimized to minimize the annual total cost of DPBIS for DH systems.An optimization model to obtain the optimum ... The insulation thickness(IT)of double pipes buried in the soil(DPBIS)for district heating(DH)systems was optimized to minimize the annual total cost of DPBIS for DH systems.An optimization model to obtain the optimum insulation thickness(OIT)and minimum annual total cost(MATC)of DPBIS for DH systems was established.The zero point theorem and fsolve function were used to solve the optimization model.Three types of heat sources,four operating strategies,three kinds of insulation materials,seven nominal pipe size(NPS)values,and three buried depth(BD)values were considered in the calculation of the OIT and MATC of DPBIS for DH systems,respectively.The optimization results for the above factors were compared.The results show that the OIT and MATC of DPBIS for DH systems can be obtained by using the optimization model.Sensitivity analysis was conducted to investigate the impact of some economic parameters,i.e.,unit heating cost,insulation material price,interest rate,and insulation material lifetime,on optimization results.It is found out that the impact of sensitivity factors on the OIT and MATC of DPBIS for DH systems is different. 展开更多
关键词 double pipes optimization model optimum insulation thickness minimum annual total cost
原文传递
Optimum insulation thickness of external walls by integrating indoor moisture buffering effect: a case study in the hot-summer-cold-winter zone of China
9
作者 Yan-hao FENG Zi-tao YU +1 位作者 Jiang LU Xu XU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期998-1012,共15页
In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effe... In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness. 展开更多
关键词 Insulation thickness optimization Coupled heat and moisture transfer Indoor moisture buffering effect Exterior wall Lifecycle cost
原文传递
Optimizing environmental insulation thickness of buildings with CHP-based district heating system based on amount of energy and energy grade
10
作者 Yumei ZHANG Pengfei JIE +1 位作者 Chunhua LIU Jing LI 《Frontiers in Energy》 SCIE CSCD 2022年第4期613-628,共16页
The increase of insulation thickness(IT)results in the decrease of the heat demand and heat medium temperature.A mathematical model on the optimum environmental insulation thickness(OEIT)for minimizing the annual tota... The increase of insulation thickness(IT)results in the decrease of the heat demand and heat medium temperature.A mathematical model on the optimum environmental insulation thickness(OEIT)for minimizing the annual total environmental impact was established based on the amount of energy and energy grade reduction.Besides,a case study was conducted based on a residential community with a combined heat and power(CHP)-based district heating system(DHS)in Tianjin,China.Moreover,the effect of IT on heat demand,heat medium temperature,exhaust heat,extracted heat,coal consumption,carbon dioxide(CO_(2))emissions and sulfur dioxide(SO_(2))emissions as well as the effect of three types of insulation materials(i.e.,expanded polystyrene,rock wool and glass wool)on the OEIT and minimum annual total environmental impact were studied.The results reveal that the optimization model can be used to determine the OEIT.When the OEIT of expanded polystyrene,rock wool and glass wool is used,the annual total environmental impact can be reduced by 84.563%,83.211%,and 86.104%,respectively.It can be found that glass wool is more beneficial to the environment compared with expanded polystyrene and rock wool. 展开更多
关键词 optimum environmental insulation thickness heat medium temperature energy grade extracted heat exhaust heat
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部