Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developi...Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.展开更多
This study investigated the effects of a xylitol-casein non-covalent complex(XC)on parameters related to type 2 diabetes mellitus(T2DM),in addition to related changes in gut microbiome composition and functions.High-f...This study investigated the effects of a xylitol-casein non-covalent complex(XC)on parameters related to type 2 diabetes mellitus(T2DM),in addition to related changes in gut microbiome composition and functions.High-fat-diet(HFD)+streptozotocin(STZ)-induced T2DM mice were treated with xylitol(XY),casein(CN),and XC,after which fecal samples were collected for gut microbiota composition and diversity analyses based on 16S rRNA high-throughput sequencing and multivariate statistics.XC decreased body weight and improved glucose tolerance,insulin sensitivity,pancreas impairment,blood lipid levels,and liver function in T2DM mice compared to XY-and CN-treated mice.Furthermore,XC modulated theα-diversity,β-diversity and gut microbiota composition.Based on Spearman’s correlation analysis,the relative abundances of Alistipes,Bacteroides,and Faecalibaculum were positively correlated and those of Akkermansia,Lactobacillus,Bifidobacterium,and Turicibacter were negatively correlated with the phenotypes related to the improvement of T2DM.In conclusion,we found that XC alleviated insulin resistance by restoring the gut microbiota of T2DM mice.Our results provide strong evidence for the beneficial effects of XC on T2DM and motivation for further investigation in animal models and,eventually,human trials.展开更多
With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic ...With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic syndrome.Palmitoleic acid is a monounsaturated fatty acid that is available from dietary sources,mainly derived from marine products.P almitoleic acid plays a positive role in maintaining glucose homeostasis and reducing inflammation.However,it is still unknow the mechanism of palmitoleic acid in ameliorating insulin resistance.Here,we investigated the effects of palmitoleic acid on chow diet(CD)-fed and high-fat diet(HFD)-fed mice,which were fed CD or HFD for 12 weeks before administration.We administrated mice with BSA(control),oleic acid,or palmitoleic acid for 6 weeks on top of CD or HFD feeding.We found that palmitoleic acid only improved glucose homeostasis in HFD-fed obese mice by increasing glucose clearance and reducing HOMA-IR.Further study explored that palmitoleic acid changed the composition of gut microbiota by decreasing Firmicutes population and increasing Bacteroidetes population.In colon,palmitoleic acid increased intestinal tight junction integrity and reduced inflammation.Moreover,palmitoleic acid decreased macrophage infiltration in liver and adipose tissue and increase glucose uptake in adipose tissue.Diacylglycerol(DAG)in tissue(for example,liver)is found to positively correlated with HOMA-IR.HFD enhanced the levels of DAGs in liver but not in adipose tissue in this study.Palmitoleic acid did not reverse the high DAG levels induced by HFD in liver.Therefore,in HFD-fed mice,palmitoleic acid reduced insulin resistance by an independent-manner of DAGs.It might be associated with the beneficial effects of palmitoleic acid on altering the gut microbiota composition,improving of intestinal barrier function,and downregulating the inflammation in colon,liver,and adipose tissue.展开更多
BACKGROUND The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass(DJB)surgery is not clear.AIM To study the morphological and functional changes in adipose tissue after DJB and explore the poten...BACKGROUND The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass(DJB)surgery is not clear.AIM To study the morphological and functional changes in adipose tissue after DJB and explore the potential mechanisms contributing to postoperative insulin sensitivity improvement of adipose tissue in a diabetic male rat model.METHODS DJB and sham surgery was performed in a-high-fat-diet/streptozotocin-induced diabetic rat model.All adipose tissue was weighed and observed under microscope.Use inguinal fat to represent subcutaneous adipose tissue(SAT)and mesangial fat to represent visceral adipose tissue.RNA-sequencing was utilized to evaluate gene expression alterations adipocytes.The hematoxylin and eosin staining,reverse transcription-quantitative polymerase chain reaction,western blot,and enzyme-linked immunosorbent assay were used to study the changes.Insulin resistance was evaluated by immunofluorescence.RESULTS After DJB,whole body blood glucose metabolism and insulin sensitivity in adipose tissue improved.Fat cell volume in both visceral adipose tissue(VAT)and SAT increased.Compared to SAT,VAT showed more significantly functional alterations after DJB and KEGG analysis indicated growth hormone(GH)pathway and downstream adiponectin secretion were involved in metabolic regulation.The circulating GH and adiponectin levels and GH receptor and adiponectin levels in VAT increased.Cytological experiment showed that GH stimulated adiponectin secretion and improve insulin sensitivity.CONCLUSION GH improves insulin resistance in VAT in male diabetic rats after receiving DJB,possibly by increasing adiponectin secretion.展开更多
The following letter to the editor highlights the article“Effects of vitamin D supplementation on glucose and lipid metabolism in patients with type 2 diabetes mellitus and risk factors for insulin resistance”in Wor...The following letter to the editor highlights the article“Effects of vitamin D supplementation on glucose and lipid metabolism in patients with type 2 diabetes mellitus and risk factors for insulin resistance”in World J Diabetes 2023 Oct 15;14(10):1514-1523.It is necessary to explore the role of vitamin family members in insulin resistance and diabetes complications.展开更多
BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therape...BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.展开更多
BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is ...BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is a histone acetyltransferase that participates in the modulation of various genes.AIM To determine the effects of KAT7 on insulin patients with AD.METHODS APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes,respectively.An in vitro model of AD was established by Aβstimulation.Insulin resistance was induced by chronic stimulation with high insulin levels.The expression of microtubule-associated protein 2(MAP2)was assessed using immunofluorescence.The protein levels of MAP2,Aβ,dual-specificity tyrosine phosphorylation-regulated kinase-1A(DYRK1A),IRS-1,p-AKT,total AKT,p-GSK3β,total GSK3β,DYRK1A,and KAT7 were measured via western blotting.Accumulation of reactive oxygen species(ROS),malondialdehyde(MDA),and SOD activity was measured to determine cellular oxidative stress.Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation,respectively.Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR.A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A.RESULTS KAT7 expression was suppressed in the AD mice.Overexpression of KAT7 decreased Aβaccumulation and MAP2 expression in AD brains.KAT7 overexpression decreased ROS and MDA levels,elevated SOD activity in brain tissues and neurons,and simultaneously suppressed neuronal apoptosis.KAT7 upregulated levels of p-AKT and p-GSK3βto alleviate insulin resistance,along with elevated expression of DYRK1A.KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A.HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion.CONCLUSION We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation.Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.展开更多
Aim: Sub-Saharan Africa is undergoing an epidemiological transition responsible for a change in the metabolic profile in favour of insulin resistance. The aim of this study was to assess the dynamics of the prevalence...Aim: Sub-Saharan Africa is undergoing an epidemiological transition responsible for a change in the metabolic profile in favour of insulin resistance. The aim of this study was to assess the dynamics of the prevalence of insulin resistance and associated risk factors in diabetic patients in the Democratic Republic of Congo between 2005 and 2023. Method: We measured fasting blood glucose and insulin levels and looked for metabolic syndrome parameters (2009 criteria) in type 2 diabetes patients in 2005-2008 (n = 176) and in 2018-2023 (n = 303). The HOMA model was used to measure insulin sensitivity and islet β-cell secretory function. Results: Between 2005 and 2013, the trend was towards an increase in the prevalence of insulin resistance (from 13.1% to 50.8%;p Conclusion: This present study shows an increase in insulin resistance in Congolese urban areas and a persistence of atypical diabetes mellitus in Congolese rural areas, confirming the particularity of the pathophysiology of the disease in African areas currently influenced by the epidemiological transition. Further studies using an appropriate methodology are required.展开更多
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this...BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD.AIM To map the research landscape to underscore critical areas of focus,influential studies,and future directions of NAFLD and IR.METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022.The search strategy used terms from the literature and medical subject headings,focusing on terms related to IR and NAFLD.VOSviewer software was used to visualize research trends,collaborations,and key thematic areas.The analysis examined publication type,annual research output,contributing countries and institutions,funding agencies,journal impact factors,citation patterns,and highly cited references.RESULTS This analysis identified 23124 documents on NAFLD,revealing a significant increase in the number of publications between 1999 and 2022.The search retrieved 715 papers on IR and NAFLD,including 573(80.14%)articles and 88(12.31%)reviews.The most productive countries were China(n=134;18.74%),the United States(n=122;17.06%),Italy(n=97;13.57%),and Japan(n=41;5.73%).The leading institutions included the Universitàdegli Studi di Torino,Italy(n=29;4.06%),and the Consiglio Nazionale delle Ricerche,Italy(n=19;2.66%).The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States(n=48;6.71%),and the National Natural Science Foundation of China(n=37;5.17%).The most active journals in this field were Hepatology(27 publications),the Journal of Hepatology(17 publications),and the Journal of Clinical Endocrinology and Metabolism(13 publications).The main research hotspots were“therapeutic approaches for IR and NAFLD”and“inflammatory and high-fat diet impacts on NAFLD”.CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD.In response to the escalating global health challenge of NAFLD,this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies.Policymakers need to prioritize and address the increasing prevalence of NAFLD.展开更多
Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,...Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.展开更多
BACKGROUND Insulin resistance and obesity present significant challenges in pediatric populations.Selenoprotein P1(SEPP1)serves as a biomarker for assessing selenium levels in the body.While its association with metab...BACKGROUND Insulin resistance and obesity present significant challenges in pediatric populations.Selenoprotein P1(SEPP1)serves as a biomarker for assessing selenium levels in the body.While its association with metabolic syndrome is established in adults,its relevance in children remains underexplored.AIM To ascertain SEPP1 blood levels in children and adolescents diagnosed with obesity and to assess its correlation with insulin resistance and adiposity indices.METHODS 170 children participated in this study,including 85 diagnosed with obesity and an equal number of healthy counterparts matched for age and sex.Each participant underwent a comprehensive medical evaluation,encompassing a detailed medical history,clinical examination,and anthropometric measurements like waist circumference and waist-to-height ratio.Furthermore,routine blood tests were conducted,including serum SEPP1,visceral adiposity index(VAI),and Homeostatic Model Assessment of Insulin Resistance(HOMA-IR)level.RESULTS Our findings revealed significantly lower serum SEPP1 levels in children with obesity compared to their healthy peers.Moreover,notable negative correlations were observed between serum SEPP1 levels and body mass index,VAI,and HOMA-IR.CONCLUSION The study suggests that SEPP1 could serve as a valuable predictor for insulin resistance among children and adolescents diagnosed with obesity.This highlights the potential utility of SEPP1 in pediatric metabolic health assessment and warrants further investigation.展开更多
Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening an...Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening and related research of such patients. Methods: Two hundred patients with T2DM admitted to Guandu People’s Hospital of Kunming were included. The study was carried out from October 2022 to December 2023. The patients were divided into three groups according to different abdominal visceral fat areas (VFA): Group A (n = 65) was less than 75cm2, Group B (n = 75) was 75-100 cm2, and Group C (n = 60) was greater than 100 cm2. The subjects in the three groups were all tested for glycated hemoglobin (HbA1c), fasting insulin (FINS), and fasting blood glucose (FPG). Height and weight were measured to calculate body mass index (BMI). The HOMA-IR and TYG (fasting triglyceride and glycemic index) were also calculated. Changes in the BMI, VFA, HOMA-IR, and TYG levels were observed in the three groups. Results: The VFA, BMI, HbA1c, FPG, FINS, HOMA-IR, and TYG of the patients all increased, with a more significant increase in the BMI, FINS, HOMA-IR, and TYG levels (P < 0.01). Multiple linear stepwise regression analyses used visceral fat area (VFA) as the dependent variable. The results showed that VFA was closely related to BMI, FINS, HOMA-IR, and TYG. Conclusion: Early reduction of VFA to reduce insulin resistance may be a better treatment and effective method for T2DM, providing powerful measures and new strategies for effective blood sugar control and early prevention in the treatment of metabolic diseases.展开更多
The relationship between metabolic derangements and fatty liver development are undeniable,since more than 75% of patients with type 2 diabetes mellitus present with fatty liver.There is also significant epidemiologic...The relationship between metabolic derangements and fatty liver development are undeniable,since more than 75% of patients with type 2 diabetes mellitus present with fatty liver.There is also significant epidemiological association between insulin resistance(IR)and metabolic(dysfunction)-associated fatty liver disease(MAFLD).For little more than 2 years,the nomenclature of fatty liver of non-alcoholic origin has been intended to change to MAFLD by multiple groups.While a myriad of reasons for which MAFLD is thought to be of metabolic origin could be exposed,the bottom line relies on the role of IR as an initiator and perpetuator of this disease.There is a reciprocal role in MAFLD development and IR as well as serum glucose concentrations,where increased circulating glucose and insulin result in increased de novo lipogenesis by sterol regulatory elementbinding protein-1c induced lipogenic enzyme stimulation;therefore,increased endogenous production of triglycerides.The same effect is achieved through impaired suppression of adipose tissue(AT)lipolysis in insulin-resistant states,increasing fatty acid influx into the liver.The complementary reciprocal situation occurs when liver steatosis alters hepatokine secretion,modifying fatty acid metabolism as well as IR in a variety of tissues,including skeletal muscle,AT,and the liver.The aim of this review is to discuss the importance of IR and AT interactions in metabolic altered states as perhaps the most important factor in MAFLD pathogenesis.展开更多
Selenium is a trace mineral essential for life that acts physiologically through selenoproteins.Among other actions,the endogenous antioxidant selenoprotein glutathione peroxidase and the selenium transporter in blood...Selenium is a trace mineral essential for life that acts physiologically through selenoproteins.Among other actions,the endogenous antioxidant selenoprotein glutathione peroxidase and the selenium transporter in blood,selenoprotein P,seem to play an important role in type 2 diabetes mellitus and insulin resistance by weakening the insulin signaling cascade through different mechanisms.Recent findings also suggest that selenoproteins also affect insulin biosynthesis and insulin secretion.This review discussed the role of selenium in type 2 diabetes and the complex interplay between selenoproteins and insulin pathways.展开更多
Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how centra...Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance my lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the rela...BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.展开更多
BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedent...BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle,the incidence of NAFLD has surpassed that of viral hepatitis,making it the most common cause of chronic liver disease globally.Huangqin decoction(HQD),a Chinese medicinal formulation that has been used clinically for thousands of years,has beneficial outcomes in patients with liver diseases,including NAFLD.However,the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood.AIM To evaluate the ameliorative effects of HQD in NAFLD,with a focus on lipid metabolism and insulin resistance,and to elucidate the underlying mechanism of action.METHODS High-fat diet-induced NAFLD rats and palmitic acid(PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action.Phytochemicals in HQD were analyzed by highperformance liquid chromatography(HPLC)to identify the key components.RESULTS Ten primary chemical components of HQD were identified by HPLC analysis.In vivo,HQD effectively prevented rats from gaining body and liver weight,improved the liver index,ameliorated hepatic histological aberrations,decreased transaminase and lipid profile disorders,and reduced the levels of pro-inflammatory factors and insulin resistance.In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation,inflammation,and insulin resistance in HepG2 cells.In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathwaymodulated lipogenesis and inflammation,contributing to its beneficial actions,which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD.CONCLUSION In summary,our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.展开更多
BACKGROUND An association between cardiorespiratory fitness(CRF)and insulin resistance in obese adolescents,especially in those with various obesity categories,has not been systematically studied.There is a lack of kn...BACKGROUND An association between cardiorespiratory fitness(CRF)and insulin resistance in obese adolescents,especially in those with various obesity categories,has not been systematically studied.There is a lack of knowledge about the effects of CRF on insulin resistance in severely obese adolescents,despite their continuous rise.AIM To investigate the association between CRF and insulin resistance in obese adolescents,with special emphasis on severely obese adolescents.METHODS We performed a prospective,cross-sectional study that included 200 pubertal adolescents,10 years to 18 years of age,who were referred to a tertiary care center due to obesity.According to body mass index(BMI),adolescents were classified as mildly obese(BMI 100% to 120% of the 95^(th)percentile for age and sex)or severely obese(BMI≥120% of the 95^(th)percentile for age and sex or≥35 kg/m^(2),whichever was lower).Participant body composition was assessed by bioelectrical impedance analysis.A homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.Maximal oxygen uptake(VO_(2)max)was determined from submaximal treadmill exercise test.CRF was expressed as VO_(2)max scaled by total body weight(TBW)(mL/min/kg TBW)or by fat free mass(FFM)(mL/min/kg FFM),and then categorized as poor,intermediate,or good,according to VO_(2)max terciles.Data were analyzed by statistical software package SPSS(IBM SPSS Statistics for Windows,Version 24.0).P<0.05 was considered statistically significant.RESULTS A weak negative correlation between CRF and HOMA-IR was found[Spearman’s rank correlation coefficient(rs)=-0.28,P<0.01 for CRF_(TBW);(r_(s))=-0.21,P<0.01 for CRF_(FFM)].One-way analysis of variance(ANOVA)revealed a significant main effect of CRF on HOMA-IR[F(2200)=6.840,P=0.001 for CRF_(TBW);F_((2200))=3.883,P=0.022 for CRF_(FFM)].Subsequent analyses showed that obese adolescents with poor CRF had higher HOMA-IR than obese adolescents with good CRF(P=0.001 for CRF_(TBW);P=0.018 for CRF_(FFM)).Two-way ANOVA with Bonferroni correction confirmed significant effect of interaction of CRF level and obesity category on HOMA-IR[F_((2200))=3.292,P=0.039 for CRF_(TBW)].Severely obese adolescents had higher HOMA-IR than those who were mildly obese,with either good or poor CRF.However,HOMA-IR did not differ between severely obese adolescents with good and mildly obese adolescents with poor CRF.CONCLUSION CRF is an important determinant of insulin resistance in obese adolescents,regardless of obesity category.Therefore,CRF assessment should be a part of diagnostic procedure,and its improvement should be a therapeutic goal.展开更多
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is...Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.展开更多
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
文摘Diabetes mellitus(DM)and Alzheimer's disease(AD)are two major health concerns that have seen a rising prevalence worldwide.Recent studies have indicated a possible link between DM and an increased risk of developing AD.Insulin,while primarily known for its role in regulating blood sugar,also plays a vital role in protecting brain functions.Insulin resistance(IR),especially prevalent in type 2 diabetes,is believed to play a significant role in AD's development.When insulin signalling becomes dysfunctional,it can negatively affect various brain functions,making individuals more susceptible to AD's defining features,such as the buildup of beta-amyloid plaques and tau protein tangles.Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD.This review aims to explore the relationship between DM and AD,with a focus on the role of IR.It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR.Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
基金supported by the “Thirteenth Five Year” National Science and Technology Plan Project of China (2018YFC1603703,2018YFC1604302)National Natural Science Foundation of China (2013BAD18B03)+1 种基金Shenyang Technological Innovation Project (Y170-028)LiaoNing Revitalization Talents Project (XLYC1902083)
文摘This study investigated the effects of a xylitol-casein non-covalent complex(XC)on parameters related to type 2 diabetes mellitus(T2DM),in addition to related changes in gut microbiome composition and functions.High-fat-diet(HFD)+streptozotocin(STZ)-induced T2DM mice were treated with xylitol(XY),casein(CN),and XC,after which fecal samples were collected for gut microbiota composition and diversity analyses based on 16S rRNA high-throughput sequencing and multivariate statistics.XC decreased body weight and improved glucose tolerance,insulin sensitivity,pancreas impairment,blood lipid levels,and liver function in T2DM mice compared to XY-and CN-treated mice.Furthermore,XC modulated theα-diversity,β-diversity and gut microbiota composition.Based on Spearman’s correlation analysis,the relative abundances of Alistipes,Bacteroides,and Faecalibaculum were positively correlated and those of Akkermansia,Lactobacillus,Bifidobacterium,and Turicibacter were negatively correlated with the phenotypes related to the improvement of T2DM.In conclusion,we found that XC alleviated insulin resistance by restoring the gut microbiota of T2DM mice.Our results provide strong evidence for the beneficial effects of XC on T2DM and motivation for further investigation in animal models and,eventually,human trials.
基金by National Natural Science Foundation of China(81803224)Young Scholars Program of Shandong University(2018WLJH33)to X.G.+3 种基金National Natural Science Foundation of China(81973031)Cheeloo Young Scholar Program of Shandong University(21320089963054)to H.W.Young Scholars Program of Shandong University(2018WLJH34)the Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology(LMDBKF-2019-05)to L.D.
文摘With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic syndrome.Palmitoleic acid is a monounsaturated fatty acid that is available from dietary sources,mainly derived from marine products.P almitoleic acid plays a positive role in maintaining glucose homeostasis and reducing inflammation.However,it is still unknow the mechanism of palmitoleic acid in ameliorating insulin resistance.Here,we investigated the effects of palmitoleic acid on chow diet(CD)-fed and high-fat diet(HFD)-fed mice,which were fed CD or HFD for 12 weeks before administration.We administrated mice with BSA(control),oleic acid,or palmitoleic acid for 6 weeks on top of CD or HFD feeding.We found that palmitoleic acid only improved glucose homeostasis in HFD-fed obese mice by increasing glucose clearance and reducing HOMA-IR.Further study explored that palmitoleic acid changed the composition of gut microbiota by decreasing Firmicutes population and increasing Bacteroidetes population.In colon,palmitoleic acid increased intestinal tight junction integrity and reduced inflammation.Moreover,palmitoleic acid decreased macrophage infiltration in liver and adipose tissue and increase glucose uptake in adipose tissue.Diacylglycerol(DAG)in tissue(for example,liver)is found to positively correlated with HOMA-IR.HFD enhanced the levels of DAGs in liver but not in adipose tissue in this study.Palmitoleic acid did not reverse the high DAG levels induced by HFD in liver.Therefore,in HFD-fed mice,palmitoleic acid reduced insulin resistance by an independent-manner of DAGs.It might be associated with the beneficial effects of palmitoleic acid on altering the gut microbiota composition,improving of intestinal barrier function,and downregulating the inflammation in colon,liver,and adipose tissue.
基金Supported by National Natural Science Foundation of China(General Program),No.82070852 and No.82270901.
文摘BACKGROUND The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass(DJB)surgery is not clear.AIM To study the morphological and functional changes in adipose tissue after DJB and explore the potential mechanisms contributing to postoperative insulin sensitivity improvement of adipose tissue in a diabetic male rat model.METHODS DJB and sham surgery was performed in a-high-fat-diet/streptozotocin-induced diabetic rat model.All adipose tissue was weighed and observed under microscope.Use inguinal fat to represent subcutaneous adipose tissue(SAT)and mesangial fat to represent visceral adipose tissue.RNA-sequencing was utilized to evaluate gene expression alterations adipocytes.The hematoxylin and eosin staining,reverse transcription-quantitative polymerase chain reaction,western blot,and enzyme-linked immunosorbent assay were used to study the changes.Insulin resistance was evaluated by immunofluorescence.RESULTS After DJB,whole body blood glucose metabolism and insulin sensitivity in adipose tissue improved.Fat cell volume in both visceral adipose tissue(VAT)and SAT increased.Compared to SAT,VAT showed more significantly functional alterations after DJB and KEGG analysis indicated growth hormone(GH)pathway and downstream adiponectin secretion were involved in metabolic regulation.The circulating GH and adiponectin levels and GH receptor and adiponectin levels in VAT increased.Cytological experiment showed that GH stimulated adiponectin secretion and improve insulin sensitivity.CONCLUSION GH improves insulin resistance in VAT in male diabetic rats after receiving DJB,possibly by increasing adiponectin secretion.
基金Supported by the National Natural Science Foundation of China,No.82170286Basic Research Program of Guizhou Province(Natural Sciences),No.ZK[2023]321+1 种基金Start-up Fund of Guizhou Medical University,No.J2021032Postdoctoral Research Fund of Affiliated Hospital of Guizhou Medical University,No.BSH-Q-2021-10.
文摘The following letter to the editor highlights the article“Effects of vitamin D supplementation on glucose and lipid metabolism in patients with type 2 diabetes mellitus and risk factors for insulin resistance”in World J Diabetes 2023 Oct 15;14(10):1514-1523.It is necessary to explore the role of vitamin family members in insulin resistance and diabetes complications.
基金Supported by the Preresearch Project of the National Natural Science Foundation of China,No.ZRYY1906the Applied Basic Research Project of the Science and Technology Department of Sichuan Province,No.2021YJ0154+1 种基金the Talent Research Promotion Plan of Xinglin Scholars of Chengdu University of Traditional Chinese Medicine,No.QNXZ2019035the Chengdu University of Traditional Chinese Medicine‘Xinglin Scholars'subject talent research promotion Program(young scholars),No.QNXZ2019037.
文摘BACKGROUND Lingguizhugan(LGZG)decoction is a widely used classic Chinese medicine formula that was recently shown to improve high-fat diet(HFD)-induced insulin resistance(IR)in animal studies.AIM To assess the therapeutic effect of LGZG decoction on HFD-induced IR and explore the potential underlying mechanism.METHODS To establish an IR rat model,a 12-wk HFD was administered,followed by a 4-wk treatment with LGZG.The determination of IR status was achieved through the use of biochemical tests and oral glucose tolerance tests.Using a targeted metabolomics platform to analyze changes in serum metabolites,quantitative real-time PCR(qRT-PCR)was used to assess the gene expression of the ribosomal protein S6 kinase beta 1(S6K1).RESULTS In IR rats,LGZG decreased body weight and indices of hepatic steatosis.It effectively controlled blood glucose and food intake while protecting islet cells.Metabolite analysis revealed significant differences between the HFD and HFDLGZG groups.LGZG intervention reduced branched-chain amino acid levels.Levels of IR-related metabolites such as tryptophan,alanine,taurine,and asparagine decreased significantly.IR may be linked to amino acids due to the contemporaneous increase in S6K1 expression,as shown by qRT-PCR.CONCLUSIONS Our study strongly suggests that LGZG decoction reduces HFD-induced IR.LGZG may activate S6K1 via metabolic pathways.These findings lay the groundwork for the potential of LGZG as an IR treatment.
基金Supported by Natural Science Foundation of Shandong Province,No.ZR2020MH147National Natural Science Foundation of China,No.82002343.
文摘BACKGROUND Epidemiological studies have revealed a correlation between Alzheimer’s disease(AD)and type 2 diabetes mellitus(T2D).Insulin resistance in the brain is a common feature in patients with T2D and AD.KAT7 is a histone acetyltransferase that participates in the modulation of various genes.AIM To determine the effects of KAT7 on insulin patients with AD.METHODS APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes,respectively.An in vitro model of AD was established by Aβstimulation.Insulin resistance was induced by chronic stimulation with high insulin levels.The expression of microtubule-associated protein 2(MAP2)was assessed using immunofluorescence.The protein levels of MAP2,Aβ,dual-specificity tyrosine phosphorylation-regulated kinase-1A(DYRK1A),IRS-1,p-AKT,total AKT,p-GSK3β,total GSK3β,DYRK1A,and KAT7 were measured via western blotting.Accumulation of reactive oxygen species(ROS),malondialdehyde(MDA),and SOD activity was measured to determine cellular oxidative stress.Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation,respectively.Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR.A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A.RESULTS KAT7 expression was suppressed in the AD mice.Overexpression of KAT7 decreased Aβaccumulation and MAP2 expression in AD brains.KAT7 overexpression decreased ROS and MDA levels,elevated SOD activity in brain tissues and neurons,and simultaneously suppressed neuronal apoptosis.KAT7 upregulated levels of p-AKT and p-GSK3βto alleviate insulin resistance,along with elevated expression of DYRK1A.KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A.HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion.CONCLUSION We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation.Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.
文摘Aim: Sub-Saharan Africa is undergoing an epidemiological transition responsible for a change in the metabolic profile in favour of insulin resistance. The aim of this study was to assess the dynamics of the prevalence of insulin resistance and associated risk factors in diabetic patients in the Democratic Republic of Congo between 2005 and 2023. Method: We measured fasting blood glucose and insulin levels and looked for metabolic syndrome parameters (2009 criteria) in type 2 diabetes patients in 2005-2008 (n = 176) and in 2018-2023 (n = 303). The HOMA model was used to measure insulin sensitivity and islet β-cell secretory function. Results: Between 2005 and 2013, the trend was towards an increase in the prevalence of insulin resistance (from 13.1% to 50.8%;p Conclusion: This present study shows an increase in insulin resistance in Congolese urban areas and a persistence of atypical diabetes mellitus in Congolese rural areas, confirming the particularity of the pathophysiology of the disease in African areas currently influenced by the epidemiological transition. Further studies using an appropriate methodology are required.
文摘BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens.As it has been linked to insulin resistance(IR),this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD.AIM To map the research landscape to underscore critical areas of focus,influential studies,and future directions of NAFLD and IR.METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022.The search strategy used terms from the literature and medical subject headings,focusing on terms related to IR and NAFLD.VOSviewer software was used to visualize research trends,collaborations,and key thematic areas.The analysis examined publication type,annual research output,contributing countries and institutions,funding agencies,journal impact factors,citation patterns,and highly cited references.RESULTS This analysis identified 23124 documents on NAFLD,revealing a significant increase in the number of publications between 1999 and 2022.The search retrieved 715 papers on IR and NAFLD,including 573(80.14%)articles and 88(12.31%)reviews.The most productive countries were China(n=134;18.74%),the United States(n=122;17.06%),Italy(n=97;13.57%),and Japan(n=41;5.73%).The leading institutions included the Universitàdegli Studi di Torino,Italy(n=29;4.06%),and the Consiglio Nazionale delle Ricerche,Italy(n=19;2.66%).The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States(n=48;6.71%),and the National Natural Science Foundation of China(n=37;5.17%).The most active journals in this field were Hepatology(27 publications),the Journal of Hepatology(17 publications),and the Journal of Clinical Endocrinology and Metabolism(13 publications).The main research hotspots were“therapeutic approaches for IR and NAFLD”and“inflammatory and high-fat diet impacts on NAFLD”.CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD.In response to the escalating global health challenge of NAFLD,this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies.Policymakers need to prioritize and address the increasing prevalence of NAFLD.
基金Changshu Science and Technology Plan(Social Development)Project(No.CS202130)Key Project of Changshu No.2 People’s Hospital(No.CSEY2021007)。
文摘Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.
文摘BACKGROUND Insulin resistance and obesity present significant challenges in pediatric populations.Selenoprotein P1(SEPP1)serves as a biomarker for assessing selenium levels in the body.While its association with metabolic syndrome is established in adults,its relevance in children remains underexplored.AIM To ascertain SEPP1 blood levels in children and adolescents diagnosed with obesity and to assess its correlation with insulin resistance and adiposity indices.METHODS 170 children participated in this study,including 85 diagnosed with obesity and an equal number of healthy counterparts matched for age and sex.Each participant underwent a comprehensive medical evaluation,encompassing a detailed medical history,clinical examination,and anthropometric measurements like waist circumference and waist-to-height ratio.Furthermore,routine blood tests were conducted,including serum SEPP1,visceral adiposity index(VAI),and Homeostatic Model Assessment of Insulin Resistance(HOMA-IR)level.RESULTS Our findings revealed significantly lower serum SEPP1 levels in children with obesity compared to their healthy peers.Moreover,notable negative correlations were observed between serum SEPP1 levels and body mass index,VAI,and HOMA-IR.CONCLUSION The study suggests that SEPP1 could serve as a valuable predictor for insulin resistance among children and adolescents diagnosed with obesity.This highlights the potential utility of SEPP1 in pediatric metabolic health assessment and warrants further investigation.
文摘Objective: To analyze the correlation between visceral fat area and insulin resistance index (HOMA-IR) in patients with type 2 diabetes mellitus (T2DM) and abdominal obesity and to provide a reference for screening and related research of such patients. Methods: Two hundred patients with T2DM admitted to Guandu People’s Hospital of Kunming were included. The study was carried out from October 2022 to December 2023. The patients were divided into three groups according to different abdominal visceral fat areas (VFA): Group A (n = 65) was less than 75cm2, Group B (n = 75) was 75-100 cm2, and Group C (n = 60) was greater than 100 cm2. The subjects in the three groups were all tested for glycated hemoglobin (HbA1c), fasting insulin (FINS), and fasting blood glucose (FPG). Height and weight were measured to calculate body mass index (BMI). The HOMA-IR and TYG (fasting triglyceride and glycemic index) were also calculated. Changes in the BMI, VFA, HOMA-IR, and TYG levels were observed in the three groups. Results: The VFA, BMI, HbA1c, FPG, FINS, HOMA-IR, and TYG of the patients all increased, with a more significant increase in the BMI, FINS, HOMA-IR, and TYG levels (P < 0.01). Multiple linear stepwise regression analyses used visceral fat area (VFA) as the dependent variable. The results showed that VFA was closely related to BMI, FINS, HOMA-IR, and TYG. Conclusion: Early reduction of VFA to reduce insulin resistance may be a better treatment and effective method for T2DM, providing powerful measures and new strategies for effective blood sugar control and early prevention in the treatment of metabolic diseases.
文摘The relationship between metabolic derangements and fatty liver development are undeniable,since more than 75% of patients with type 2 diabetes mellitus present with fatty liver.There is also significant epidemiological association between insulin resistance(IR)and metabolic(dysfunction)-associated fatty liver disease(MAFLD).For little more than 2 years,the nomenclature of fatty liver of non-alcoholic origin has been intended to change to MAFLD by multiple groups.While a myriad of reasons for which MAFLD is thought to be of metabolic origin could be exposed,the bottom line relies on the role of IR as an initiator and perpetuator of this disease.There is a reciprocal role in MAFLD development and IR as well as serum glucose concentrations,where increased circulating glucose and insulin result in increased de novo lipogenesis by sterol regulatory elementbinding protein-1c induced lipogenic enzyme stimulation;therefore,increased endogenous production of triglycerides.The same effect is achieved through impaired suppression of adipose tissue(AT)lipolysis in insulin-resistant states,increasing fatty acid influx into the liver.The complementary reciprocal situation occurs when liver steatosis alters hepatokine secretion,modifying fatty acid metabolism as well as IR in a variety of tissues,including skeletal muscle,AT,and the liver.The aim of this review is to discuss the importance of IR and AT interactions in metabolic altered states as perhaps the most important factor in MAFLD pathogenesis.
文摘Selenium is a trace mineral essential for life that acts physiologically through selenoproteins.Among other actions,the endogenous antioxidant selenoprotein glutathione peroxidase and the selenium transporter in blood,selenoprotein P,seem to play an important role in type 2 diabetes mellitus and insulin resistance by weakening the insulin signaling cascade through different mechanisms.Recent findings also suggest that selenoproteins also affect insulin biosynthesis and insulin secretion.This review discussed the role of selenium in type 2 diabetes and the complex interplay between selenoproteins and insulin pathways.
基金supported by a grant from All India Institute of Medical Sciences,New Delhi (to RD and TD)Indian Council of Medical Research,Senior Research Fellowship Grant (3/1/2(24)/oph-2009-NCD-II,to MAF)+1 种基金Feldstein Medical Foundation Research Grant (to KCC)unrestricted fund from Research to Prevent Blindness to NYU Langone Health Department of Ophthalmology (to KCC)。
文摘Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance my lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM.
基金the Scientific Research Project of Jiangsu Health Commission,No.Z2022078the Natural Science Foundation of Jiangsu Province,No.BK20220299.
文摘BACKGROUND Nonalcoholic fatty liver disease(NAFLD)is a clinicopathological entity characterized by intrahepatic ectopic steatosis.As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle,the incidence of NAFLD has surpassed that of viral hepatitis,making it the most common cause of chronic liver disease globally.Huangqin decoction(HQD),a Chinese medicinal formulation that has been used clinically for thousands of years,has beneficial outcomes in patients with liver diseases,including NAFLD.However,the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood.AIM To evaluate the ameliorative effects of HQD in NAFLD,with a focus on lipid metabolism and insulin resistance,and to elucidate the underlying mechanism of action.METHODS High-fat diet-induced NAFLD rats and palmitic acid(PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action.Phytochemicals in HQD were analyzed by highperformance liquid chromatography(HPLC)to identify the key components.RESULTS Ten primary chemical components of HQD were identified by HPLC analysis.In vivo,HQD effectively prevented rats from gaining body and liver weight,improved the liver index,ameliorated hepatic histological aberrations,decreased transaminase and lipid profile disorders,and reduced the levels of pro-inflammatory factors and insulin resistance.In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation,inflammation,and insulin resistance in HepG2 cells.In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathwaymodulated lipogenesis and inflammation,contributing to its beneficial actions,which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD.CONCLUSION In summary,our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.
文摘BACKGROUND An association between cardiorespiratory fitness(CRF)and insulin resistance in obese adolescents,especially in those with various obesity categories,has not been systematically studied.There is a lack of knowledge about the effects of CRF on insulin resistance in severely obese adolescents,despite their continuous rise.AIM To investigate the association between CRF and insulin resistance in obese adolescents,with special emphasis on severely obese adolescents.METHODS We performed a prospective,cross-sectional study that included 200 pubertal adolescents,10 years to 18 years of age,who were referred to a tertiary care center due to obesity.According to body mass index(BMI),adolescents were classified as mildly obese(BMI 100% to 120% of the 95^(th)percentile for age and sex)or severely obese(BMI≥120% of the 95^(th)percentile for age and sex or≥35 kg/m^(2),whichever was lower).Participant body composition was assessed by bioelectrical impedance analysis.A homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.Maximal oxygen uptake(VO_(2)max)was determined from submaximal treadmill exercise test.CRF was expressed as VO_(2)max scaled by total body weight(TBW)(mL/min/kg TBW)or by fat free mass(FFM)(mL/min/kg FFM),and then categorized as poor,intermediate,or good,according to VO_(2)max terciles.Data were analyzed by statistical software package SPSS(IBM SPSS Statistics for Windows,Version 24.0).P<0.05 was considered statistically significant.RESULTS A weak negative correlation between CRF and HOMA-IR was found[Spearman’s rank correlation coefficient(rs)=-0.28,P<0.01 for CRF_(TBW);(r_(s))=-0.21,P<0.01 for CRF_(FFM)].One-way analysis of variance(ANOVA)revealed a significant main effect of CRF on HOMA-IR[F(2200)=6.840,P=0.001 for CRF_(TBW);F_((2200))=3.883,P=0.022 for CRF_(FFM)].Subsequent analyses showed that obese adolescents with poor CRF had higher HOMA-IR than obese adolescents with good CRF(P=0.001 for CRF_(TBW);P=0.018 for CRF_(FFM)).Two-way ANOVA with Bonferroni correction confirmed significant effect of interaction of CRF level and obesity category on HOMA-IR[F_((2200))=3.292,P=0.039 for CRF_(TBW)].Severely obese adolescents had higher HOMA-IR than those who were mildly obese,with either good or poor CRF.However,HOMA-IR did not differ between severely obese adolescents with good and mildly obese adolescents with poor CRF.CONCLUSION CRF is an important determinant of insulin resistance in obese adolescents,regardless of obesity category.Therefore,CRF assessment should be a part of diagnostic procedure,and its improvement should be a therapeutic goal.
基金supported by the National Natural Science Foundation of China[31872674]the Jilin Talent Development Foundation Grant[20200301018RQ]the Fundamental Research Funds for the Central Universities[CGZH202206].
文摘Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.