In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃...Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃.This extensive amount of heating is usually provided by employing large-size air heaters,fueled by diesel,propane,natural gas,or heavy oil,leading to high energy costs and large carbon footprints.At the same time,the thermal energy content of a diesel generator sets(gen-sets)exhaust is known to be one-third of the total heating value of its combusted fuel.Exhaust heat recovery from diesel gen-sets is a growing technology that seeks to mitigate the energy costs by capturing and redirecting this commonly rejected exhaust heat to other applications such as space heating or pre-heating of the mine intake air.The present study investigated the possibility of employing a simple system based on off-theshelf heat exchanger technology,which can recover the waste heat from the exhaust of the power generation units(diesel gen-sets)in an off-grid,cold,remote mine in Canada for heating of the mine intake air.Data from a real mine was used for the analysis along with environmental data of three different location-scenarios with distinct climates.After developing a thermodynamic model,the heat savings were calculated,and an economic feasibility evaluation was performed.The proposed system was found highly viable with annual savings of up to C$6.7 million and capable enough to provide an average of around 75%of the heating demand for mine intake air,leading to a payback period of about eleven months or less for all scenarios.Deployment of seasonal thermal energy storage has also been recommended to mitigate the mismatch between supply and demand,mainly in summertime,possibly allowing the system to eliminate fuel costs for intake air heating.展开更多
To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.T...To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.展开更多
The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the ...The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.展开更多
Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free ...Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vor- tex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homoge- neous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the flee surface vortex can be controlled by installing curtain walls.展开更多
The trade-off between NO_(x)-soot and ISFC(Indicated Specific Fuel Consumption)brings new challenges for the development and application of innovative techniques that could reduce the NO_(x)-soot emissions of diesel e...The trade-off between NO_(x)-soot and ISFC(Indicated Specific Fuel Consumption)brings new challenges for the development and application of innovative techniques that could reduce the NO_(x)-soot emissions of diesel engine simultaneously with the lowest possible fuel penalty.In this study,the two coupling measures,advanced SOI(start of injection)respectively coupled with intake air humidification(IAH)and EGR,were used to achieve lower NO_(x)-soot emissions than the original engine while minimizing the increase in ISFC.Numerical studies were conducted on a four-stroke supercharged intercooled marine diesel engine under 75%loads at 1350 r/min by using AVL Fire code.The advanced SOI varied from 14.5°CA BTDC to 20°CA BTDC;humidity ratio ranged from 0 to 100%in increments of 20%,and EGR rate ranged from 0 to 25%in increments of 5%.The technical route to achieve Tier III emission standards was also analyzed in this paper.The result indicates that lower in-cylinder pressure,temperature and NO_(x)emissions,higher ISFC and soot emissions are observed when only IAH or EGR technology is applied,while opposite trends are found when only using advanced SOI.The proper combination of different SOI respectively with humidity ratio and EGR rate can improve the trade-off relationship between NO_(x)and soot.Meanwhile,the increase in ISFC is improved by using advanced SOI under high EGR rate or humidity ratio.Compared with the advanced SOI coupled with EGR,advanced SOI coupled with IAH results in less loss of ISFC.Analysis results reveal that both above-mentioned coupling measures can achieve low NO_(x)-soot emissions while ensuring that ISFC does not increase.As expected,there are nine combinations of advanced SOI coupled EGR that can achieve NO emissions to meet the Tier III standard,while advanced SOI coupled IAH has only one combination to meet this regulation.展开更多
Due to huge-power aircraft development and more electronic devices applied onboard,high heat flow density and uneven thermal distribution are becoming new problems.One new try is adding an air-lubricating oil radiator...Due to huge-power aircraft development and more electronic devices applied onboard,high heat flow density and uneven thermal distribution are becoming new problems.One new try is adding an air-lubricating oil radiator as the secondary cooling component but there are still few reports on its research.Therefore,this paper proposes a newly-design plate-fin air-lubricating oil radiator different from tube-fin or shell-tube conventionally used in previous engine system.This radiator is arc,and equipped in internal surface of air intake.Numerical and experimental analyses were carried out on fin performance.Their results agreed well with average error of 13%on thermal resistance.Then heat and flow behaviors of oil side were presented with different structures and sizes of flowing passage.According to all research,optimized radiator is gained with fin spacing of 3.76 mm,fin thickness of 2 mm,single flowing path with width of 13 mm and gradient inlet and outlet.Its heat dissipation of 28.35 k W and pressure loss of 2.2 MPa can meet actual working requirements.The research proves an air-lubricating oil radiator with arc structure and layout mode of internal surface to be feasible,which is a new but efficient cooling scheme and can lead to an innovative but wide use in modern aircrafts.展开更多
Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled an...Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.展开更多
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
文摘Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃.This extensive amount of heating is usually provided by employing large-size air heaters,fueled by diesel,propane,natural gas,or heavy oil,leading to high energy costs and large carbon footprints.At the same time,the thermal energy content of a diesel generator sets(gen-sets)exhaust is known to be one-third of the total heating value of its combusted fuel.Exhaust heat recovery from diesel gen-sets is a growing technology that seeks to mitigate the energy costs by capturing and redirecting this commonly rejected exhaust heat to other applications such as space heating or pre-heating of the mine intake air.The present study investigated the possibility of employing a simple system based on off-theshelf heat exchanger technology,which can recover the waste heat from the exhaust of the power generation units(diesel gen-sets)in an off-grid,cold,remote mine in Canada for heating of the mine intake air.Data from a real mine was used for the analysis along with environmental data of three different location-scenarios with distinct climates.After developing a thermodynamic model,the heat savings were calculated,and an economic feasibility evaluation was performed.The proposed system was found highly viable with annual savings of up to C$6.7 million and capable enough to provide an average of around 75%of the heating demand for mine intake air,leading to a payback period of about eleven months or less for all scenarios.Deployment of seasonal thermal energy storage has also been recommended to mitigate the mismatch between supply and demand,mainly in summertime,possibly allowing the system to eliminate fuel costs for intake air heating.
基金Project(51176014)supported by the National Natural Science Foundation of ChinaProject(2016JJ2003)supported by Natural Scienceof Hunan Province,ChinaProject(KF1605)supported by Key Laboratory of Safety Design and Reliability Technology of Engineering Vehicle in Hunan Province,China。
文摘To ensure the control of the precision of air-fuel ratio(AFR)of port fuel injection(PFI)spark ignition(SI)engines,a chaos radial basis function(RBF)neural network is used to predict the air intake flow of the engine.The data of air intake flow is proved to be multidimensionally nonlinear and chaotic.The RBF neural network is used to train the reconstructed phase space of the data.The chaos algorithm is employed to optimize the weights of output layer connection and the radial basis center of Gaussian function in hidden layer.The simulation results obtained from Matlab/Simulink illustrate that the model has higher accuracy compared to the conventional RBF model.The mean absolute error and the mean relative error of the chaos RBF model can reach 0.0017 and 0.48,respectively.
文摘The structure, separation principle and feasibility research for a new type of vehicle air filter called the high speed rotary positive air filter were described. The analysis of the experimental data showed that the principle and structure of it were feasible and it possessed high separation efficiency and great self cleaning ability. Compared with the conventional air filter it also has lower air intake loss. So it is worth further practical research.
基金supported by"BK21 Plus project"and"Human Resources Program in Energy Technology"(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20164010200940)
文摘Free surface vortex control is vital in a pump sump system because the air absorbed by free surface vortex induc- es noise, vibration, and cavitation corrosion on the pumping system. In this study, the change of free surface vor- tex and air absorption in a pump intake has been investigated by the Volume of Fraction (VOF) method with steady multiphase flow model in order to represent the behavior of the free surface vortex exactly. The homoge- neous free surface model is used to apply interactions of air and water. The results show that air intake by the free surface vortex motion can be visualized using the iso-surface of air volume fraction. The vortices make an air column from the free surface to the pump intake. Also, it was found that the flee surface vortex can be controlled by installing curtain walls.
基金financial support of the National Natural Science Foundation of China(Project 50676067)the National High Technology Research and Development Program of China(“863”Program)(Project 2012AA111705)。
文摘The trade-off between NO_(x)-soot and ISFC(Indicated Specific Fuel Consumption)brings new challenges for the development and application of innovative techniques that could reduce the NO_(x)-soot emissions of diesel engine simultaneously with the lowest possible fuel penalty.In this study,the two coupling measures,advanced SOI(start of injection)respectively coupled with intake air humidification(IAH)and EGR,were used to achieve lower NO_(x)-soot emissions than the original engine while minimizing the increase in ISFC.Numerical studies were conducted on a four-stroke supercharged intercooled marine diesel engine under 75%loads at 1350 r/min by using AVL Fire code.The advanced SOI varied from 14.5°CA BTDC to 20°CA BTDC;humidity ratio ranged from 0 to 100%in increments of 20%,and EGR rate ranged from 0 to 25%in increments of 5%.The technical route to achieve Tier III emission standards was also analyzed in this paper.The result indicates that lower in-cylinder pressure,temperature and NO_(x)emissions,higher ISFC and soot emissions are observed when only IAH or EGR technology is applied,while opposite trends are found when only using advanced SOI.The proper combination of different SOI respectively with humidity ratio and EGR rate can improve the trade-off relationship between NO_(x)and soot.Meanwhile,the increase in ISFC is improved by using advanced SOI under high EGR rate or humidity ratio.Compared with the advanced SOI coupled with EGR,advanced SOI coupled with IAH results in less loss of ISFC.Analysis results reveal that both above-mentioned coupling measures can achieve low NO_(x)-soot emissions while ensuring that ISFC does not increase.As expected,there are nine combinations of advanced SOI coupled EGR that can achieve NO emissions to meet the Tier III standard,while advanced SOI coupled IAH has only one combination to meet this regulation.
基金supported by the Natural Science Foundation of Fujian Province of China(Grant No.2018D0018)CAS Key Laboratory of Cryogenics,TIPC(Grant No.CRYO201708)。
文摘Due to huge-power aircraft development and more electronic devices applied onboard,high heat flow density and uneven thermal distribution are becoming new problems.One new try is adding an air-lubricating oil radiator as the secondary cooling component but there are still few reports on its research.Therefore,this paper proposes a newly-design plate-fin air-lubricating oil radiator different from tube-fin or shell-tube conventionally used in previous engine system.This radiator is arc,and equipped in internal surface of air intake.Numerical and experimental analyses were carried out on fin performance.Their results agreed well with average error of 13%on thermal resistance.Then heat and flow behaviors of oil side were presented with different structures and sizes of flowing passage.According to all research,optimized radiator is gained with fin spacing of 3.76 mm,fin thickness of 2 mm,single flowing path with width of 13 mm and gradient inlet and outlet.Its heat dissipation of 28.35 k W and pressure loss of 2.2 MPa can meet actual working requirements.The research proves an air-lubricating oil radiator with arc structure and layout mode of internal surface to be feasible,which is a new but efficient cooling scheme and can lead to an innovative but wide use in modern aircrafts.
文摘Computational Fluid Dynamics is used to assess the thermal(heat transfer)performances of an automobile engine considering different grille opening and closing degrees.For this purpose the entire vehicle is modelled and three fundamental aspects are examined,namely,the open area of the air intake grille,the position of the upper and lower grilles and their shape.The results show that the opening area and position of the grille have some influence also on the aerodynamic characteristics of the automobile.With an increase in the opening angle of the grille,the CD(Drag Coefficient)value of the whole vehicle becomes higher.When the air intake grille of the car is fully open or closed,the CD value is 0.35434 or 0.31777,respectively,that is,the flow resistance in the engine compartment accounts for 10.32%of the CD value for the whole automobile.