A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet...A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local...In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.展开更多
Any potential damage may be severe once an accident occurs involving hazardous materials.It is therefore important to consider the risk factor concerning hazardous material supply chains,in order to make the best inve...Any potential damage may be severe once an accident occurs involving hazardous materials.It is therefore important to consider the risk factor concerning hazardous material supply chains,in order to make the best inventory routing decisions.This paper addresses the problem of hazardous material multi-period inventory routing with the assumption of a limited production capacity of a given manufacturer.The goal is to achieve the manufacturer's production plan,the retailer's supply schedule and the transportation routes within a fixed period.As the distribution of hazardous materials over a certain period is essentially a multiple travelling salesmen problem,the authors formulate a loadingdependent risk model for multiple-vehicle transportation and present an integer programming model to maximize the supply chain profit.An improved genetic algorithm considering two dimensions of chromosomes that cover the aforementioned period and supply quantity is devised to handle the integer programming model.Numerical experiments carried out demonstrate that using the proposed multiperiod joint decision-making can significantly increase the overall profit of the supply chain as compared to the use of single period decision repeatedly,while effectively reducing its risk.展开更多
Given an edge weighted graph, the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum. Here we study a special case, i.e. the Constrained Maximu...Given an edge weighted graph, the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum. Here we study a special case, i.e. the Constrained Maximum Edge-Weight Connected Graph problem (CMECG), which is an MECG whose candidate subgraphs must include a given set of k edges, then also called the k-CMECG. We formulate the k-CMECG into an integer linear programming model based on the network flow problem. The k-CMECG is proved to be NP-hard. For the special case 1-CMECG, we propose an exact algorithm and a heuristic algorithm respectively. We also propose a heuristic algorithm for the k-CMECG problem. Some simulations have been done to analyze the quality of these algorithms. Moreover, we show that the algorithm for 1-CMECG problem can lead to the solution of the general MECG problem.展开更多
基金The National Natural Science Foundationof China (70473037)
文摘A 0-1 integer programming model for weekly fleet assignment was put forward based on linear network and weekly flight scheduling in China. In this model, the objective function is to maximize the total profit of fleet assignment, subject to the constraints of coverage, aircraft flow balance, fleet size, aircraft availability, aircraft usage, flight restriction, aircraft seat capacity, and stopover. Then the branch-and-bound algorithm based on special ordered set was applied to solve the model. At last, a real- wofld case study on an airline with 5 fleets, 48 aircrafts and 1 786 flight legs indicated that the profit increase was ¥ 1 591276 one week and the running time was no more than 4 rain, which shows that the model and algorithm are fairly good for domestic airline.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
基金supported by the National Natural Science Foundation of China(Grant No.51777067).
文摘In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company.
基金supported by the National Natural Science Foundation of China under Grant Nos.71571010,71722007a Fundamental Research Funds for the Central Universities under Grant No.XK1802-5+1 种基金a Ser CymruⅡCOFUND Research Fellowship,UKa Great Wall Scholar Training Program of Beijing Municipality under Grant No.CIT&TCD20180305。
文摘Any potential damage may be severe once an accident occurs involving hazardous materials.It is therefore important to consider the risk factor concerning hazardous material supply chains,in order to make the best inventory routing decisions.This paper addresses the problem of hazardous material multi-period inventory routing with the assumption of a limited production capacity of a given manufacturer.The goal is to achieve the manufacturer's production plan,the retailer's supply schedule and the transportation routes within a fixed period.As the distribution of hazardous materials over a certain period is essentially a multiple travelling salesmen problem,the authors formulate a loadingdependent risk model for multiple-vehicle transportation and present an integer programming model to maximize the supply chain profit.An improved genetic algorithm considering two dimensions of chromosomes that cover the aforementioned period and supply quantity is devised to handle the integer programming model.Numerical experiments carried out demonstrate that using the proposed multiperiod joint decision-making can significantly increase the overall profit of the supply chain as compared to the use of single period decision repeatedly,while effectively reducing its risk.
基金supported by National Natural Science Foundation of China under Grant,No.60873205Beijing Natural Science Foundation under Grant No. 1092011+1 种基金Foundation of Beijing Education Commission under Grant No.SM200910037005the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(PHR(IHLB))and Foundation of WYJD200902
文摘Given an edge weighted graph, the maximum edge-weight connected graph (MECG) is a connected subgraph with a given number of edges and the maximal weight sum. Here we study a special case, i.e. the Constrained Maximum Edge-Weight Connected Graph problem (CMECG), which is an MECG whose candidate subgraphs must include a given set of k edges, then also called the k-CMECG. We formulate the k-CMECG into an integer linear programming model based on the network flow problem. The k-CMECG is proved to be NP-hard. For the special case 1-CMECG, we propose an exact algorithm and a heuristic algorithm respectively. We also propose a heuristic algorithm for the k-CMECG problem. Some simulations have been done to analyze the quality of these algorithms. Moreover, we show that the algorithm for 1-CMECG problem can lead to the solution of the general MECG problem.