It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispens...It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispensable to meet the demands for high throughput and low latency in next generation mobile communication systems. This paper unveils the fact that interleavers based on permutation polynomials modulo N are contention-free for every window size W, a factor of the intedeaver length N, which, also called maximum contention-free interleavers.展开更多
Let L/F be a finite Galois extension of number fields of degree n and let p be a prime which does not divide n.We shall study the pj-rank of K_(2i)(O_(L))via its Galois module structure following the approaches of Iwa...Let L/F be a finite Galois extension of number fields of degree n and let p be a prime which does not divide n.We shall study the pj-rank of K_(2i)(O_(L))via its Galois module structure following the approaches of Iwasawa and Komatsu–Nakano.Along the way,we generalize previous observations of Browkin,Wu and Zhou on K2-groups to higher even K-groups.We also give examples to illustrate our results.Finally,we apply our discussion to refine a result of Kitajima pertaining to the p-rank of even K-groups in the cyclotomic Z_(l)-extension,where l≠p.展开更多
Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-...Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed展开更多
Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup...Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup>N<sup>α</sup>(p)with a fixed α】0,where the asterisk means that the summation is over the non-associate prime divisors p of an integer α in Q((1/2)d),N(α)is the norm of α.In this paper we obtain the asymptotic formula of ∑<sub>N</sub>(α)≤<sub>x</sub> <sup>*</sup>B<sub>α</sub>(α)in the case where the class-number of Q((1/2)d)is one.展开更多
If an adversary tries to obtain a secret s in a(t,n)threshold secret sharing(SS)scheme,it has to capture no less than t shares instead of the secret s directly.However,if a shareholder keeps a fixed share for a long t...If an adversary tries to obtain a secret s in a(t,n)threshold secret sharing(SS)scheme,it has to capture no less than t shares instead of the secret s directly.However,if a shareholder keeps a fixed share for a long time,an adversary may have chances to filch some shareholders’shares.In a proactive secret sharing(PSS)scheme,shareholders are supposed to refresh shares at fixed period without changing the secret.In this way,an adversary can recover the secret if and only if it captures at least t shares during a period rather than any time,and thus PSS provides enhanced protection to long-lived secrets.The existing PSS schemes are almost based on linear SS but no Chinese Remainder Theorem(CRT)-based PSS scheme was proposed.This paper proposes a PSS scheme based on CRT for integer ring to analyze the reason why traditional CRT-based SS is not suitable to design PSS schemes.Then,an ideal PSS scheme based on CRT for polynomial ring is also proposed.The scheme utilizes isomorphism of CRT to implement efficient share refreshing.展开更多
We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices ov...We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices over power series are also studied.展开更多
基金Project (No. 60332030) supported by the National Natural ScienceFoundation of China
文摘It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispensable to meet the demands for high throughput and low latency in next generation mobile communication systems. This paper unveils the fact that interleavers based on permutation polynomials modulo N are contention-free for every window size W, a factor of the intedeaver length N, which, also called maximum contention-free interleavers.
基金Supported by National Natural Science Foundation of China(Grant No.11771164)the Fundamental Research Funds for the Central Universities of CCNU(Grant No.CCNU20TD002)。
文摘Let L/F be a finite Galois extension of number fields of degree n and let p be a prime which does not divide n.We shall study the pj-rank of K_(2i)(O_(L))via its Galois module structure following the approaches of Iwasawa and Komatsu–Nakano.Along the way,we generalize previous observations of Browkin,Wu and Zhou on K2-groups to higher even K-groups.We also give examples to illustrate our results.Finally,we apply our discussion to refine a result of Kitajima pertaining to the p-rank of even K-groups in the cyclotomic Z_(l)-extension,where l≠p.
基金Supported by the National Natural Science Foundation of China(60673081)863 Program(2006AA01Z417)
文摘Let Z/(p^e) be the integer residue ring modulo p^e with p an odd prime and integer e ≥ 3. For a sequence a over Z/(p^e), there is a unique p-adic decomposition a- = a-0 +a-1 .p +… + a-e-l .p^e-1 where each a-i can be regarded as a sequence over Z/(p), 0 ≤ i ≤ e - 1. Let f(x) be a primitive polynomial over Z/(p^e) and G'(f(x),p^e) the set of all primitive sequences generated by f(x) over Z/(p^e). For μ(x) ∈ Z/(p)[x] with deg(μ(x)) ≥ 2 and gad(1 + deg(μ(x)),p- 1) = 1, setφe-1 (x0, x1,… , xe-1) = xe-1. [μ(xe-2) + ηe-3(x0, X1,…, xe-3)] + ηe-2(x0, X1,…, xe-2) which is a function of e variables over Z/(p). Then the compressing mapφe-1 : G'(f(x),p^e) → (Z/(p))^∞ ,a-→φe-1(a-0,a-1, … ,a-e-1) is injective. That is, for a-,b-∈ G'(f(x),p^e), a- = b- if and only if φe-1 (a-0,a-1, … ,a-e-1) = φe-1(b-0, b-1,… ,b-e-1). As for the case of e = 2, similar result is also given. Furthermore, if functions φe-1 and ψe-1 over Z/(p) are both of the above form and satisfy φe-1(a-0,a-1,…,a-e-1)=ψe-1(b-0, b-1,… ,b-e-1) for a-,b-∈G'(f(x),p^e), the relations between a- and b-, φe-1 and ψe-1 are discussed
基金Project supported by the National Natural Science Foundation of China.
文摘Let B<sub>α</sub>(α)be an additive function on a ring of integers in the quadratic number field Q((1/2)d)given by B<sub>α</sub>(α)=∑<sub>p丨α</sub><sup>*</sup>N<sup>α</sup>(p)with a fixed α】0,where the asterisk means that the summation is over the non-associate prime divisors p of an integer α in Q((1/2)d),N(α)is the norm of α.In this paper we obtain the asymptotic formula of ∑<sub>N</sub>(α)≤<sub>x</sub> <sup>*</sup>B<sub>α</sub>(α)in the case where the class-number of Q((1/2)d)is one.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61572454)National Key R&D Project(2018YFB2100301,2018YFB0803400)the National Natural Science Foundation of China(Grant Nos.61572453,61520106007).
文摘If an adversary tries to obtain a secret s in a(t,n)threshold secret sharing(SS)scheme,it has to capture no less than t shares instead of the secret s directly.However,if a shareholder keeps a fixed share for a long time,an adversary may have chances to filch some shareholders’shares.In a proactive secret sharing(PSS)scheme,shareholders are supposed to refresh shares at fixed period without changing the secret.In this way,an adversary can recover the secret if and only if it captures at least t shares during a period rather than any time,and thus PSS provides enhanced protection to long-lived secrets.The existing PSS schemes are almost based on linear SS but no Chinese Remainder Theorem(CRT)-based PSS scheme was proposed.This paper proposes a PSS scheme based on CRT for integer ring to analyze the reason why traditional CRT-based SS is not suitable to design PSS schemes.Then,an ideal PSS scheme based on CRT for polynomial ring is also proposed.The scheme utilizes isomorphism of CRT to implement efficient share refreshing.
基金The research of the author was supported by the Natural Science Foundation of Zhejiang Province (LY13A010019) and the Fund of Hangzhou Normal University, China.
文摘We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices over power series are also studied.