In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the ...In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Gaussian integers(GI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.But the prime field dependent on the Elliptic curve(EC)provides one S-box at a time by fixing three parameters a,b,and p.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the poi...In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves,chaotic maps,and Gaussian integers has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers(EI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.However,in the same way,by taking three fixed parameters only one S-box is obtained through a prime field-dependent Elliptic curve(EC),chaotic maps,and Gaussian integers.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.展开更多
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio...Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.展开更多
A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling a...A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.展开更多
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and...Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.展开更多
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1...In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.展开更多
A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this ar...A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.展开更多
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int...We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.展开更多
BACKGROUND Given the current organ shortage crisis,split liver transplantation(SLT)has emerged as a promising alternative for select end-stage liver disease patients.AIM To introduce an ex-vivo liver graft splitting a...BACKGROUND Given the current organ shortage crisis,split liver transplantation(SLT)has emerged as a promising alternative for select end-stage liver disease patients.AIM To introduce an ex-vivo liver graft splitting approach and evaluate its safety and feasibility in SLT.METHODS A retrospective analysis was conducted on the liver transplantation data from cases performed at our center between April 1,2022,and May 31,2023.The study included 25 SLT cases and 81 whole liver transplantation(WLT)cases.Total ex-vivo liver splitting was employed for SLT graft procurement in three steps.Patient outcomes were determined,including liver function parameters,postoperative complications,and perioperative mortality.Group comparisons for categorical variables were performed using theχ²-test.RESULTS In the study,postoperative complications in the 25 SLT cases included hepatic artery thrombosis(n=1)and pulmonary infections(n=3),with no perioperative mortality.In contrast,among the 81 patients who underwent WLT,complications included perioperative mortality(n=1),postoperative pulmonary infections(n=8),abdominal infection(n=1),hepatic artery thromboses(n=3),portal vein thrombosis(n=1),and intra-abdominal bleeding(n=5).Comparative analysis demonstrated significant differences in alanine aminotransferase(176.0 vs 73.5,P=0.000)and aspartate aminotransferase(AST)(42.0 vs 29.0,P=0.004)at 1 wk postoperatively,and in total bilirubin(11.8 vs 20.8,P=0.003)and AST(41.5 vs 26.0,P=0.014)at 2 wk postoperatively.However,the overall incidence of complications was comparable between the two groups(P>0.05).CONCLUSION Our findings suggest that the total ex-vivo liver graft splitting technique is a safe and feasible approach,especially under the expertise of an experienced transplant center.The approach developed by our center can serve as a valuable reference for other transplantation centers.展开更多
The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it ...The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.展开更多
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he...The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.展开更多
Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,densi...Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,density functional theory(DFT)is used to explore the MXenes photocatalytic properties,an emerging family of two-dimensional(2D)transition metal carbides and nitrides with chemical formula M_(n+1)X_(n)T_(x),known to be semiconductors when having T_(x)terminations.More than 4,000 MXene structures have been screened,considering different compositional(M,X,T_(x),and n)and structural(stacking and termination position)factors,to find suitable MXenes with a bandgap in the visible region and band edges that align with the water-splitting half-reaction potentials.Results from bandgap analysis show how,in general,MXenes with n=1 and transition metals from group III present the most cases with bandgap and promising sizes,with C-MXenes being superior to N-MXenes.From band alignment calculations of candidate systems with a bandgap larger than 1.23 eV,the minimum required for a water-splitting process,Sc_(2)CT_(2),Y_(2)CT_(2)(T_(x)=Cl,Br,S,and Se)and Y_(2)CI_(2)are highlighted as adequate photocatalysts.展开更多
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi...Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.展开更多
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy...Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.展开更多
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen...Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.展开更多
4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Conside...4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Considering the high carrier mobility and high stability of 4H-SiC,4H-SiC has great potential in the field of photoelectrochemical(PEC)water splitting.In this work,we demonstrate the irradiation-resistant PEC water splitting based on nanoporous 4H-SiC arrays.A new two-step anodizing approach is adopted to prepare 4H-SiC nanoporous arrays with different porosity,that is,a constant low-voltage etching followed by a pulsed high-voltage etching.The constant-voltage etching and pulsed-voltage etching are adopted to control the diameter of the nanopores and the depth of the nanoporous arrays,respectively.It is found that the nanoporous arrays with medium porosity has the highest PEC current,because of the enhanced light absorption and the optimized transportation of charge carriers along the walls of the nanoporous arrays.The performance of the PEC water splitting of the nanoporous arrays is stable after the electron irradiation with the dose of 800 and 1600 k Gy,which indicates that 4H-SiC nanoporous arrays has great potential in the PEC water splitting under harsh environments.展开更多
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A sel...The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
文摘In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Gaussian integers(GI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.But the prime field dependent on the Elliptic curve(EC)provides one S-box at a time by fixing three parameters a,b,and p.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金extend their appreciation to the Deanship of Scientific Research at King Khalid University,for funding this work through the General Research Groups Program under Grant No.R.G.P.2/109/43.
文摘In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves,chaotic maps,and Gaussian integers has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers(EI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.However,in the same way,by taking three fixed parameters only one S-box is obtained through a prime field-dependent Elliptic curve(EC),chaotic maps,and Gaussian integers.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.
基金supported by the National Natural Science Foundation of China(No.22209126)。
文摘Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting.
基金Project supported by the National Natural Science Foundation of China (Grants No. 61604027 and 61704016)the Chongqing Natural Science Foundation, China (Grant No. cstc2020jcyj-msxmX0550)。
文摘A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
基金supported by the Natural Science Founda-tion of Chongqing(cstc2021jcyj-msxmX0420)Natural Science Foundation of Sichuan(2023NSFSC0088)。
文摘Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided.
基金supported by the National Natural Science Foundation of China(Nos.42074053 and 42374079)the Fundamental Research Funds from the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B30 and JY2022Z02).
文摘In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced.
基金Major Science and Technology Projects of Hainan Province,China(Grant Nos.ZDKJ2021023 and ZDKJ2021042)Hainan Provincial Natural Science Foundation of China(Grant Nos.622QN285 and 521QN210)。
文摘A new SiC asymmetric cell trench metal–oxide–semiconductor field effect transistor(MOSFET)with a split gate(SG)and integrated p^(+)-poly Si/SiC heterojunction freewheeling diode(SGHJD-TMOS)is investigated in this article.The SG structure of the SGHJD-TMOS structure can effectively reduce the gate-drain capacitance and reduce the high gateoxide electric field.The integrated p^(+)-poly Si/SiC heterojunction freewheeling diode substantially improves body diode characteristics and reduces switching losses without degrading the static characteristics of the device.Numerical analysis results show that,compared with the conventional asymmetric cell trench MOSFET(CA-TMOS),the high-frequency figure of merit(HF-FOM,R_(on,sp)×Q_(gd,sp))is reduced by 92.5%,and the gate-oxide electric field is reduced by 75%.In addition,the forward conduction voltage drop(V_(F))and gate-drain charge(Q_(gd))are reduced from 2.90 V and 63.5μC/cm^(2) in the CA-TMOS to 1.80 V and 26.1μC/cm^(2) in the SGHJD-TMOS,respectively.Compared with the CA-TMOS,the turn-on loss(E_(on)) and turn-off loss(E_(off)) of the SGHJD-TMOS are reduced by 21.1%and 12.2%,respectively.
文摘We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation.
基金Supported by the Shenzhen Science and Technology Research and Development Fund,No.JCYJ20220530163011026.
文摘BACKGROUND Given the current organ shortage crisis,split liver transplantation(SLT)has emerged as a promising alternative for select end-stage liver disease patients.AIM To introduce an ex-vivo liver graft splitting approach and evaluate its safety and feasibility in SLT.METHODS A retrospective analysis was conducted on the liver transplantation data from cases performed at our center between April 1,2022,and May 31,2023.The study included 25 SLT cases and 81 whole liver transplantation(WLT)cases.Total ex-vivo liver splitting was employed for SLT graft procurement in three steps.Patient outcomes were determined,including liver function parameters,postoperative complications,and perioperative mortality.Group comparisons for categorical variables were performed using theχ²-test.RESULTS In the study,postoperative complications in the 25 SLT cases included hepatic artery thrombosis(n=1)and pulmonary infections(n=3),with no perioperative mortality.In contrast,among the 81 patients who underwent WLT,complications included perioperative mortality(n=1),postoperative pulmonary infections(n=8),abdominal infection(n=1),hepatic artery thromboses(n=3),portal vein thrombosis(n=1),and intra-abdominal bleeding(n=5).Comparative analysis demonstrated significant differences in alanine aminotransferase(176.0 vs 73.5,P=0.000)and aspartate aminotransferase(AST)(42.0 vs 29.0,P=0.004)at 1 wk postoperatively,and in total bilirubin(11.8 vs 20.8,P=0.003)and AST(41.5 vs 26.0,P=0.014)at 2 wk postoperatively.However,the overall incidence of complications was comparable between the two groups(P>0.05).CONCLUSION Our findings suggest that the total ex-vivo liver graft splitting technique is a safe and feasible approach,especially under the expertise of an experienced transplant center.The approach developed by our center can serve as a valuable reference for other transplantation centers.
文摘The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020zD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059.
文摘The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h.
基金the Spanish Ministerio de Ciencia e Innovación through grants PID2021-126076NB-I00 and TED2021-129506B-C22the unit of excellence María de Maeztu CEX2021-001202-M granted to the IQTCUB+2 种基金the Generalitat de Catalunya 2021SGR00079 grantComputational resources have been provided by the Red Española de Supercomputación(RES)QHS-2023-2-0017 and QHS-2023-3-0012 projectsAlso,F.V.thanks the ICREA Academia Award 2023 Ref.Ac2216561.
文摘Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,density functional theory(DFT)is used to explore the MXenes photocatalytic properties,an emerging family of two-dimensional(2D)transition metal carbides and nitrides with chemical formula M_(n+1)X_(n)T_(x),known to be semiconductors when having T_(x)terminations.More than 4,000 MXene structures have been screened,considering different compositional(M,X,T_(x),and n)and structural(stacking and termination position)factors,to find suitable MXenes with a bandgap in the visible region and band edges that align with the water-splitting half-reaction potentials.Results from bandgap analysis show how,in general,MXenes with n=1 and transition metals from group III present the most cases with bandgap and promising sizes,with C-MXenes being superior to N-MXenes.From band alignment calculations of candidate systems with a bandgap larger than 1.23 eV,the minimum required for a water-splitting process,Sc_(2)CT_(2),Y_(2)CT_(2)(T_(x)=Cl,Br,S,and Se)and Y_(2)CI_(2)are highlighted as adequate photocatalysts.
基金financially supported by the National Natural Science Foundation of China(51572166,52102070)the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning(GZ2020012)+4 种基金the Key Research Project of Zhejiang Laboratory(2021PE0AC02)the China Postdoctoral Science Foundation(2021M702073)BAJC R&D Fund Projects(BA23011)Australian Research Council Future Fellowships(FT230100436)the Shanghai Technical Service Center for Advanced Ceramics Structure Design and Precision Manufacturing(20DZ2294000)。
文摘Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications.
基金supported by the National Natural Sci-ence Foundation of China(22272081),Jiangsu Provincial Specially Appointed Professors Foundation.
文摘Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications.
基金the National Natural Science Foundation of China(Grant No.12004439)Hunan Province Postgraduate Research and Innovation Project(Grant No.CX20230229)the computational resources from the High Performance Computing Center of Central South University.
文摘Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials.
基金supported by National Natural Science Foundation of China(Grant Nos.62274143 and U22A2075)Hangzhou Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LHZSD24E020001)+3 种基金Partial support was provided by Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors。
文摘4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Considering the high carrier mobility and high stability of 4H-SiC,4H-SiC has great potential in the field of photoelectrochemical(PEC)water splitting.In this work,we demonstrate the irradiation-resistant PEC water splitting based on nanoporous 4H-SiC arrays.A new two-step anodizing approach is adopted to prepare 4H-SiC nanoporous arrays with different porosity,that is,a constant low-voltage etching followed by a pulsed high-voltage etching.The constant-voltage etching and pulsed-voltage etching are adopted to control the diameter of the nanopores and the depth of the nanoporous arrays,respectively.It is found that the nanoporous arrays with medium porosity has the highest PEC current,because of the enhanced light absorption and the optimized transportation of charge carriers along the walls of the nanoporous arrays.The performance of the PEC water splitting of the nanoporous arrays is stable after the electron irradiation with the dose of 800 and 1600 k Gy,which indicates that 4H-SiC nanoporous arrays has great potential in the PEC water splitting under harsh environments.
基金financially supported from the National Natural Science Foundation of China(No.52201254)the Natural Science Foundation of Shandong Province,China(Nos.ZR2023ME155,ZR2020MB090,ZR2020QE012,ZR2020MB027)+1 种基金the Project of“20 Items of University”of Jinan,China(No.202228046)the Taishan Scholar Project of Shandong Province,China(No.tsqn202306226)。
文摘The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).A self-supporting,multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam(NF)(NiFeZn/NiZn-Ni/NF)was in-situ fabricated using an electroplating-annealing-etching strategy.The unique multiinterface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction,resulting in superior bifunctional electrocatalytic performance for water splitting.The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 m V for HER and 320 mV for OER at a current density of 600 mA/cm^(2),along with high durability over 150 h in alkaline solution.Furthermore,an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 m A/cm^(2) at cell voltages of 1.796 and 1.901 V,respectively,maintaining the high stability at 50 mA/cm^(2) for over 100 h.These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.