Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, t...Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Bou...A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.展开更多
Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup...Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.展开更多
A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamilto...A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.展开更多
Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian struc...Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are...A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are worked out. The approach can be used to study other discrete integrable couplings of the discrete hierarchies of solition equations.展开更多
By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sou...By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sources as well as its nonlinear integrable couplings are derived.With the help of the variational identity,their Hamiltonian structures are generated.展开更多
Two types of Lie algebras are presented,from which two integrable couplings associated with the Tuisospectral problem are obtained,respectively.One of them possesses the Hamiltonian structure generated by a linearisom...Two types of Lie algebras are presented,from which two integrable couplings associated with the Tuisospectral problem are obtained,respectively.One of them possesses the Hamiltonian structure generated by a linearisomorphism and the quadratic-form identity.An approach for working out the double integrable couplings of the sameintegrable system is presented in the paper.展开更多
Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integra...Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.展开更多
We propose a method to construct the integrable Rosochatius deformations for an integrable couplingsequations hierarchy.As applications, the integrable Rosochatius deformations of the coupled CKdV hierarchy withself-c...We propose a method to construct the integrable Rosochatius deformations for an integrable couplingsequations hierarchy.As applications, the integrable Rosochatius deformations of the coupled CKdV hierarchy withself-consistent sources and its Lax representation are presented.展开更多
Firstly 4 Lie algebras are constructed. Then applications of the loop algebra are presented to obtain two types of coupling integrable couplings of the S-mKdV hierarchy by using Tu scheme. The coupling integrable coup...Firstly 4 Lie algebras are constructed. Then applications of the loop algebra are presented to obtain two types of coupling integrable couplings of the S-mKdV hierarchy by using Tu scheme. The coupling integrable couplings of the S-mKdV hierarchy obtained in the paper reduce to the coupling integrable couplings of the mKdV equation and the coupling integrable couplings of the nonlinear Schrodinger equation respectively. The method given in the paper can be used to other hierarchies generally.展开更多
By making use of the vector product in R^3, a commuting operation is introduced so that R^3 becomes a Lie algebra. The resulting loop algebra R^-3 is presented, from which the well-known AKNS hierarchy is produced. Ag...By making use of the vector product in R^3, a commuting operation is introduced so that R^3 becomes a Lie algebra. The resulting loop algebra R^-3 is presented, from which the well-known AKNS hierarchy is produced. Again via applying the superposition of the commuting operations of the Lie algebra, a commuting operation in R^6 is constructed so that R^6 becomes a Lie algebra. Thanks to the corresponding loop algebra R^3 of the Lie algebra R^3, the integrable coupling of the AKNS system is obtained. The method presented in this paper is rather simple and can be used to work out integrable coupling systems of the other known integrable hierarchies of soliton equations.展开更多
An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loo...An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.展开更多
A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE...A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE) with selfconsistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product.展开更多
Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identi...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.展开更多
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101by Key Disciplines of Shanghai Municipality (S30104)
文摘A kind of integrable couplings of soliton equations hierarchy with self-consistent sources associated with sl(4) is presented by Yu. Based on this method, we construct a new integrable couplings of the classical-Boussinesq hierarchy with self-consistent sources by using of loop algebra sl(4). In this paper, we also point out that there exist some errors in Yu's paper and have corrected these errors and set up new formula. The method can be generalized other soliton hierarchy with self-consistent sources.
基金supported by the National Natural Science Foundation of China(1127100861072147+1 种基金11071159)the First-Class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy.
基金Supported by the Natural Science Foundation of China under Grant Nos. 61072147, 11071159, and 10971031by the Natural Science Foundation of Shanghai and Zhejiang Province under Grant Nos. 09ZR1410800 and Y6100791+1 种基金the Shanghai Shuguang Tracking Project under Grant No. 08GG01the Shanghai Leading Academic Discipline Project under Grant No. J50101
文摘A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.
基金Foundation item: Supported by the Natural Science Foundation of China(11271008, 61072147, 11071159) Supported by the First-class Discipline of Universities in Shanghai Supported by the Shanghai University Leading Academic Discipline Project(A13-0101-12-004)
文摘Based on a kind of non-semisimple Lie algebras, we establish a way to construct nonlinear continuous integrable couplings. Variational identities over the associated loop algebras are used to furnish Hamiltonian structures of the resulting continuous couplings.As an illustrative example of the scheme is given nonlinear continuous integrable couplings of the Yang hierarchy.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
文摘A new and efficient way is presented for discrete integrable couplings with the help of two semi-direct sum Lie algebras. As its applications, two discrete integrable couplings associated with the lattice equation are worked out. The approach can be used to study other discrete integrable couplings of the discrete hierarchies of solition equations.
基金Project supported by the Innovation Group Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q07-01)the Key Foundation of the National Natural Science Foundation of China (Grant No. 41030855)the Special Funding of Marine Science Study,State Ocean Administration of China (Grant No. 20090513-2)
文摘By means of the Lie algebra B 2,a new extended Lie algebra F is constructed.Based on the Lie algebras B 2 and F,the nonlinear Schro¨dinger-modified Korteweg de Vries(NLS-mKdV) hierarchy with self-consistent sources as well as its nonlinear integrable couplings are derived.With the help of the variational identity,their Hamiltonian structures are generated.
基金National Natural Science Foundation of China under Grant No.10471139
文摘Two types of Lie algebras are presented,from which two integrable couplings associated with the Tuisospectral problem are obtained,respectively.One of them possesses the Hamiltonian structure generated by a linearisomorphism and the quadratic-form identity.An approach for working out the double integrable couplings of the sameintegrable system is presented in the paper.
基金The project supported by National Natural Science Foundation of China under Grant No. 50275013
文摘Two types of Lie algebras are constructed, which are directly used to deduce the two resulting integrable coupling systems with multi-component potential functions. Many other integrable couplings of the known integrable systems may be obtained by the approach.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No.L2010513
文摘We propose a method to construct the integrable Rosochatius deformations for an integrable couplingsequations hierarchy.As applications, the integrable Rosochatius deformations of the coupled CKdV hierarchy withself-consistent sources and its Lax representation are presented.
基金Supported by National Natural Science Foundation of China under Grant No. 10901090, the Natural Science Foundation of Shandong Province under Grant No. ZR2010AM029, and the Innovative Scientific Research Projects of Young of Binzhou University (BZXYQNLG200725)
文摘Firstly 4 Lie algebras are constructed. Then applications of the loop algebra are presented to obtain two types of coupling integrable couplings of the S-mKdV hierarchy by using Tu scheme. The coupling integrable couplings of the S-mKdV hierarchy obtained in the paper reduce to the coupling integrable couplings of the mKdV equation and the coupling integrable couplings of the nonlinear Schrodinger equation respectively. The method given in the paper can be used to other hierarchies generally.
文摘By making use of the vector product in R^3, a commuting operation is introduced so that R^3 becomes a Lie algebra. The resulting loop algebra R^-3 is presented, from which the well-known AKNS hierarchy is produced. Again via applying the superposition of the commuting operations of the Lie algebra, a commuting operation in R^6 is constructed so that R^6 becomes a Lie algebra. Thanks to the corresponding loop algebra R^3 of the Lie algebra R^3, the integrable coupling of the AKNS system is obtained. The method presented in this paper is rather simple and can be used to work out integrable coupling systems of the other known integrable hierarchies of soliton equations.
文摘An extension of the Lie algebra A_~n-1 has been proposed [Phys. Lett. A, 2003, [STHZ]310:19-24]. In this paper, the new Lie algebra was used to construct a new higher dimensional loop algebra [AKG~]. Based on the loop algebra [AKG~], the integrable couplings system of the NLS-MKdV equations hierarchy was obtained. As its reduction case, generalized nonlinear NLS-MKdV equations were obtained. The method proposed in this letter can be applied to other hierarchies of evolution equations.
基金Project supported by the Research work of Liaoning Provincial Development of Education, China (Grant No 2008670)
文摘A hierarchy of non-isospectral Ablowitz-Kaup-Newell-Segur (AKNS) equations with self-consistent sources is derived. As a general reduction case, a hierarchy of non-isospectral nonlinear SchrSdinger equations (NLSE) with selfconsistent sources is obtained. Moreover, a new non-isospectral integrable coupling of the AKNS soliton hierarchy with self-consistent sources is constructed by using the Kronecker product.
基金Supported by the Natural Science Foundation of Henan Province(162300410075) the Science and Technology Key Research Foundation of the Education Department of Henan Province(14A110010) the Youth Backbone Teacher Foundationof Shangqiu Normal University(2013GGJS02)
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.