We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems,...We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.展开更多
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable syst...A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.展开更多
By using the Jacobi elliptic-function method, this paper obtains the periodic solutions for coupled integrable dispersionless equations. The periodic solutions include some kink and anti-kink solitons.
Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletrans...Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.展开更多
In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite fun...In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite functions as well as substitution variables. The expressions for the general integrations of some of the equations are presented. The results obtained are the generalization of those in the references. Finally, some examples are also given.展开更多
In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard H...In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard Hirota process. One-, two-, and three-soliton solutions are presented. Furthermore, the N-soliton solutions axe derived.展开更多
With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various...With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.展开更多
In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a...In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.展开更多
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in...This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.展开更多
In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained re...In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.展开更多
In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equat...It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.展开更多
This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mecha...This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.展开更多
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ...This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated.展开更多
The development of an in-house computer program for determining the motions and loads of advancing ships through sea waves in the frequency domain,is described in this paper.The code is based on the potential flow for...The development of an in-house computer program for determining the motions and loads of advancing ships through sea waves in the frequency domain,is described in this paper.The code is based on the potential flow formulation and originates from a double-body code enhanced with the regular part of the velocity potential computed using the pulsing source Green function.The code is fully developed in C++language with extensive use of the object-oriented paradigm.The code is capable of estimating the excitation and inertial radiation loads or arbitrary incoming wave frequencies and incidence angles.The hydrodynamic responses such as hydrodynamic coefficients,ship motions,the vertical shear force and the vertical bending moment are estimated.A benchmark container ship and an LNG carrier are selected for testing and validating the computer code.The obtained results are compared with the available experimental data which demonstrate the acceptable compliance for the zero speed whereas there are some discrepancies over the range of frequencies for the advancing ship in different heading angles.展开更多
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert spa...The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.展开更多
Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds...Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.展开更多
In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11975145, 11972291, and 51771083)the Ministry of Science and Technology of China (Grant No. G2021016032L)the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 17 KJB 110020)。
文摘We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifthorder mKdV equations are given.
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
文摘A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.
基金supported by the National Natural Science Foundation of China (Grant Nos.40975028 and 40805022)
文摘By using the Jacobi elliptic-function method, this paper obtains the periodic solutions for coupled integrable dispersionless equations. The periodic solutions include some kink and anti-kink solitons.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund No.BUAA-SKLSDE-09KF-04+2 种基金Supported Project No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘Under investigation in this paper are two coupled integrable dispersionless (CID) equations modelingthe dynamics of the current-fed string within an external magnetic field.Through a set of the dependent variabletransformations, the bilinear forms for the CID equations are derived.Based on the Hirota method and symboliccomputation, the analytic N-soliton solutions are presented.Infinitely many conservation laws for the CID equationsare given through the known spectral problem.Propagation characteristics and interaction behaviors of the solitons areanalyzed graphically.
文摘In this paper, some integrable types of more general nonlinear ordinary differential equations of higher-orders are proposed in virtue of Leibnitz formula, and formulas of higher-order derivatives of the composite functions as well as substitution variables. The expressions for the general integrations of some of the equations are presented. The results obtained are the generalization of those in the references. Finally, some examples are also given.
基金National Natural Science Foundation of China under Grant No.10726063
文摘In this paper, by introducing a new transformation, the bilinear form of the coupled integrable dispersionless (CID) equations is derived. It will be shown that this bilineax form is easier to perform the standard Hirota process. One-, two-, and three-soliton solutions are presented. Furthermore, the N-soliton solutions axe derived.
文摘With the help of skew-symmetric differential forms the hidden properties of the mathematical physics equations are revealed. It is shown that the equations of mathematical physics can describe the emergence of various structures and formations such as waves, vortices, turbulent pulsations and others. Such properties of the mathematical physics equations, which are hidden (they appear only in the process of solving these equations), depend on the consistency of derivatives in partial differential equations and on the consistency of equations, if the equations of mathematical physics are a set of equations. This is due to the integrability of mathematical physics equations. It is shown that the equations of mathematical physics can have double solutions, namely, the solutions on the original coordinate space and the solutions on integrable structures that are realized discretely (due to any degrees of freedom). The transition from the solutions of the first type to one of the second type describes discrete transitions and the processes of origin of various structures and observable formations. Only mathematical physics equations, on what no additional conditions such as the integrability conditions are imposed, can possess such properties. The results of the present paper were obtained with the help of skew-symmetric differential forms.
文摘In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.
基金Supported by the NSF of Hubei Province(2022CFD042)。
文摘This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.
文摘In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
基金Supported by the Chinese Basic Research Project"Nonlinear Science"
文摘It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations.
基金Project supported by the National Natural Science Foundation of China(Nos.12372086,12072374,and 12102485)。
文摘This paper investigates the bending fracture problem of a micro/nanoscale cantilever thin plate with surface energy,where the clamped boundary is partially debonded along the thickness direction.Some fundamental mechanical equations for the bending problem of micro/nanoscale plates are given by the Kirchhoff theory of thin plates,incorporating the Gurtin-Murdoch surface elasticity theory.For two typical cases of constant bending moment and uniform shear force in the debonded segment,the associated problems are reduced to two mixed boundary value problems.By solving the resulting mixed boundary value problems using the Fourier integral transform,a new type of singular integral equation with two Cauchy kernels is obtained for each case,and the exact solutions in terms of the fundamental functions are determined using the PoincareBertrand formula.Asymptotic elastic fields near the debonded tips including the bending moment,effective shear force,and bulk stress components exhibit the oscillatory singularity.The dependence relations among the singular fields,the material constants,and the plate's thickness are analyzed for partially debonded cantilever micro-plates.If surface energy is neglected,these results reduce the bending fracture of a macroscale partially debonded cantilever plate,which has not been previously reported.
基金Project supported by the National Natural Science Foundation of China(Nos.12072209,U21A2043012192211)+1 种基金the Natural Science Foundation of Hebei Province of China(No.A2020210009)the S&T Program of Hebei Province of China(No.225676162GH)。
文摘This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated.
文摘The development of an in-house computer program for determining the motions and loads of advancing ships through sea waves in the frequency domain,is described in this paper.The code is based on the potential flow formulation and originates from a double-body code enhanced with the regular part of the velocity potential computed using the pulsing source Green function.The code is fully developed in C++language with extensive use of the object-oriented paradigm.The code is capable of estimating the excitation and inertial radiation loads or arbitrary incoming wave frequencies and incidence angles.The hydrodynamic responses such as hydrodynamic coefficients,ship motions,the vertical shear force and the vertical bending moment are estimated.A benchmark container ship and an LNG carrier are selected for testing and validating the computer code.The obtained results are compared with the available experimental data which demonstrate the acceptable compliance for the zero speed whereas there are some discrepancies over the range of frequencies for the advancing ship in different heading angles.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.
基金the Bilateral Science and Technology Collaboration Program of Australia 1998 the Natural Science Foundation of China (No. 1
文摘Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.