A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking...A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this...A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.展开更多
A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-M...A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
Presents the design scheme developed for design of software for Integrated Passive and Active Vibration Control(IPAVC) and the coding of a prototyne system, and the selection of the famous finite element program MSC/N...Presents the design scheme developed for design of software for Integrated Passive and Active Vibration Control(IPAVC) and the coding of a prototyne system, and the selection of the famous finite element program MSC/NASTRAN as an important module of software to deal with large and complicated structures and systems with an example to demonstrate the prototype system.展开更多
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat...In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.展开更多
Unlike traditional transportation,container transportation is a relatively new logistics transportation mode.Shipping containers lost at sea have raised safety concerns.In this study,finite element analysis of contain...Unlike traditional transportation,container transportation is a relatively new logistics transportation mode.Shipping containers lost at sea have raised safety concerns.In this study,finite element analysis of containers subjected to hydrostatic pressure,using commercial software ANSYS APDL was performed.A computer model that can reasonably predict the state of an ISO cargo shipping container was developed.The von Mises stress distribution of the container was determined and the yield strength was adopted as the failure criterion.Numerical investigations showed that the conventional ship container cannot withstand hydrostatic pressure in deep water conditions.A strengthened container option was considered for the container to retain its structural integrity in water conditions.展开更多
The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was devel...The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.展开更多
Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discont...Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method.展开更多
A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications ...A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications involving development of heat exchangers and cooling or heating systems of bodies by natural convection mechanism. Two cases have been studied. The inner bodies are square in case 1 and circular in case 2. In both cases, the bodies are solid and thermally conductive, the cavity lower and upper horizontal surfaces are isothermal with high temperature Th and low temperature Tc, respectively. Both vertical surfaces are adiabatic. A FORTRAN code using Finite Element Method (FEM) is developed to simulate the problem and solve the governing equations. The distributions of stream function, ψ, dimensionless temperature, θ, and vorticity, ω, are determined. Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. The Grashof number and thermal diffusivity ratio are considered in range from 2 × 104 to 105 and from 0.1 to 100, respectively. The fluid is air with Prandtl number fixed in 0.733.展开更多
With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software p...With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software packages treat it using the net-radiation method or absorbed radiation method based on the assumption of isothermal surface with uniform radiation heat flux, which brings the conflict between the precision and the quantity of grids. Using integral method to compute the variable radiation heat flux in higher-order finite element, the precision can be improved greatly while using the same quantity of grids, because it is more consistent with the distribution of real temperature. In this paper, the integral is only processed on the same integral points as those used for solving the finite element equations, so it may be of high efficiency. In an academic testing model, the result is contrast to which get in ANSYS, proving the high precision of the method. Then an actual sandwich panel used in the thermal protection system is analyzed with the method, and the error is comparatively low to the analytical answer while the computation being of high efficiency.展开更多
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ...This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated.展开更多
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides wi...In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved thro...Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.展开更多
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ...This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.展开更多
The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a...The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a new singular finite element for elasto-plastic fracture analysis has been formulated. The results of numerical tests show that the new element possesses high accuracy and good performance. Some rules for formulating a multi-variable singular finite element are also discussed in this paper.展开更多
基金The National Natural Science Foundation of China(No.51308105)
文摘A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
文摘A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.
文摘A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finiteelement-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finiteelement method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor- mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
文摘Presents the design scheme developed for design of software for Integrated Passive and Active Vibration Control(IPAVC) and the coding of a prototyne system, and the selection of the famous finite element program MSC/NASTRAN as an important module of software to deal with large and complicated structures and systems with an example to demonstrate the prototype system.
文摘In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.
文摘Unlike traditional transportation,container transportation is a relatively new logistics transportation mode.Shipping containers lost at sea have raised safety concerns.In this study,finite element analysis of containers subjected to hydrostatic pressure,using commercial software ANSYS APDL was performed.A computer model that can reasonably predict the state of an ISO cargo shipping container was developed.The von Mises stress distribution of the container was determined and the yield strength was adopted as the failure criterion.Numerical investigations showed that the conventional ship container cannot withstand hydrostatic pressure in deep water conditions.A strengthened container option was considered for the container to retain its structural integrity in water conditions.
基金Supported by the National Natural Science Foundation of China(60801050)the Excellent Talent Fund of Beijing(2011)Excellent Young Scholars Research Fund of Beijing Institute ofTechnology(2012)
文摘The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.
文摘Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method.
文摘A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity with two inner bodies is presented. This subject is of great interest in the engineering area, mainly in applications involving development of heat exchangers and cooling or heating systems of bodies by natural convection mechanism. Two cases have been studied. The inner bodies are square in case 1 and circular in case 2. In both cases, the bodies are solid and thermally conductive, the cavity lower and upper horizontal surfaces are isothermal with high temperature Th and low temperature Tc, respectively. Both vertical surfaces are adiabatic. A FORTRAN code using Finite Element Method (FEM) is developed to simulate the problem and solve the governing equations. The distributions of stream function, ψ, dimensionless temperature, θ, and vorticity, ω, are determined. Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. The Grashof number and thermal diffusivity ratio are considered in range from 2 × 104 to 105 and from 0.1 to 100, respectively. The fluid is air with Prandtl number fixed in 0.733.
文摘With the development of aeronautic and astronautic techniques, radiation becomes much more significant while the structure is exposed to the higher and higher temperature. Most of the current finite element software packages treat it using the net-radiation method or absorbed radiation method based on the assumption of isothermal surface with uniform radiation heat flux, which brings the conflict between the precision and the quantity of grids. Using integral method to compute the variable radiation heat flux in higher-order finite element, the precision can be improved greatly while using the same quantity of grids, because it is more consistent with the distribution of real temperature. In this paper, the integral is only processed on the same integral points as those used for solving the finite element equations, so it may be of high efficiency. In an academic testing model, the result is contrast to which get in ANSYS, proving the high precision of the method. Then an actual sandwich panel used in the thermal protection system is analyzed with the method, and the error is comparatively low to the analytical answer while the computation being of high efficiency.
基金Project supported by the National Natural Science Foundation of China(Nos.12072209,U21A2043012192211)+1 种基金the Natural Science Foundation of Hebei Province of China(No.A2020210009)the S&T Program of Hebei Province of China(No.225676162GH)。
文摘This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated.
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
基金Foundation item: Supported by the NSF of China(10371113)Supported by the Foundation of Overseas Scholar of China(2001(119))Supported by the project of Creative Engineering of Province of China(2002(219))
文摘In this paper, the nonconforming mortar finite element with a class of meshes is studied without considering the global regularity condition or quasi-uniformly assumption. Meanwhile, the superclose result coincides with conventional methods is obtained by means of integral identities techniques.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
基金Project supported by the National Basic Research Program of China (973 program) (No.G1999032804)
文摘Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory.
文摘This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.
文摘The multi-variable finite element algorithm based on the generalized Gulerkin's method is more flexible to establish a finite element model in the continuum mechanics. By using this algorithm and numerical tests a new singular finite element for elasto-plastic fracture analysis has been formulated. The results of numerical tests show that the new element possesses high accuracy and good performance. Some rules for formulating a multi-variable singular finite element are also discussed in this paper.