In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal...In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.展开更多
In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit ...In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.展开更多
We establish an integration by parts formula on the path space with reference measure P, the law of the(reflecting) diffusion process on manifolds with possible boundary carrying geometric flow, which leads to the sta...We establish an integration by parts formula on the path space with reference measure P, the law of the(reflecting) diffusion process on manifolds with possible boundary carrying geometric flow, which leads to the standard log-Sobolev inequality for the associated Dirichlet form. To this end, we first modify Hsu's multiplicative functionals to define the damp gradient operator, which links to quasi-invariant flows; and then establish the derivative formula for the associated inhomogeneous diffusion semigroup.展开更多
Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling use...Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling used by F. -Y. Wang [Ann. Probab., 2012, 42(3): 994-1019]. Log-Harnack inequality is established for a class of stochastic evolution equations with non- Lipschitz coefficients which includes hyperdissipative Navier-Stokes/Burgers equations as examples. The integration by parts formula is extended to the path space of stochastic functional partial differential equations, then a Dirichlet form is defined and the log-Sobolev inequality is established.展开更多
In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property ar...In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property are derived for transition semigroups of linear SDEs driven by Lévy processes.展开更多
This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
基金supported by the Natural Science Foundation of China(11901005,12071003)the Natural Science Foundation of Anhui Province(2008085QA20)。
文摘In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities.
基金supported by the National Natural Science Foundation of China(11801064)。
文摘In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.
基金supported by the National Natural Science Foundation of Zhejiang University of Technology(Grant No.2014X2011)the Starting-up Research Fund supplied by Zhejiang University of Technology(Grant No.1009007329)
文摘We establish an integration by parts formula on the path space with reference measure P, the law of the(reflecting) diffusion process on manifolds with possible boundary carrying geometric flow, which leads to the standard log-Sobolev inequality for the associated Dirichlet form. To this end, we first modify Hsu's multiplicative functionals to define the damp gradient operator, which links to quasi-invariant flows; and then establish the derivative formula for the associated inhomogeneous diffusion semigroup.
文摘Shift Harnack inequality and integration by parts formula are established for semilinear stochastic partial differential equations and stochastic functional partial differential equations by modifying the coupling used by F. -Y. Wang [Ann. Probab., 2012, 42(3): 994-1019]. Log-Harnack inequality is established for a class of stochastic evolution equations with non- Lipschitz coefficients which includes hyperdissipative Navier-Stokes/Burgers equations as examples. The integration by parts formula is extended to the path space of stochastic functional partial differential equations, then a Dirichlet form is defined and the log-Sobolev inequality is established.
基金Supported by the National Natural Science Foundation of China(10971180),(11271169)A Project Funded by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions
文摘In this paper we investigate an integration by parts formula for Lévy processes by using lower bound conditions of the corresponding Lévy measure. As applications, derivative formula and coupling property are derived for transition semigroups of linear SDEs driven by Lévy processes.
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.
基金supported by National Natural Science Foundation of China (Grant No. 11161048)Scientific Rescarch Foundation for Teacher with PhD of the Xinjiang Normal University (Grant No. XJNUBS1105)
文摘We obtain some Liouville type results of Hessian equations on Sn.