Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the t...Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.展开更多
Ferroelectric barium titanate nanoparticles(BTO NPs)may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors.While increasing experimental and theoretical understandi...Ferroelectric barium titanate nanoparticles(BTO NPs)may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors.While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade,the majority of the investigation was carried out in thin-film materials;therefore,the doping effect on nanoparticles remains unclear.Especially,doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled.In this work,we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),integrated differential phase contrast(iDPC)-STEM,and energy dispersive X-ray spectroscopy(EDX)mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles.Powder X-ray diffraction(PXRD)results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase,but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles.Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.展开更多
基金Natural Science Foundation of Hebei Province(China),Grant/Award Numbers:B2020203013,B2021203016Science and Technology Project of Hebei Education Department(China),Grant/Award Number:QN2020137+3 种基金Cultivation Project for Basic Research Innovation of Yanshan University(China),Grant/Award Number:2021LGZD015Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(China),Grant/Award Number:22567616HNatural Science Foundation of Heilongjiang Province(China),Grant/Award Number:LH2022B025Fundamental Research Funds for the Provincial Universities of Heilongjiang Province(China),Grant/Award Number:KYYWF10236190104。
文摘Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.
基金This work was supported by the National Natural Science Foundation of China(Nos.21625304,21872163,21991153,22072090,21991153,and 21991150)L.C.acknowledges the support from the Ministry of Science and Technology(No.2016YFA0200703)P.L.acknowledges the financial support from the Carlsberg Foundation.
文摘Ferroelectric barium titanate nanoparticles(BTO NPs)may play critical roles in miniaturized passive electronic devices such as multi-layered ceramic capacitors.While increasing experimental and theoretical understandings on the structure of BTO and doped BTO have been developed over the past decade,the majority of the investigation was carried out in thin-film materials;therefore,the doping effect on nanoparticles remains unclear.Especially,doping-induced local composition and structure fluctuation across single nanoparticles have yet to be unveiled.In this work,we use electron microscopy-based techniques including high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),integrated differential phase contrast(iDPC)-STEM,and energy dispersive X-ray spectroscopy(EDX)mapping to reveal atomically resolved chemical and crystal structure of BTO and strontium doped BTO nanoparticles.Powder X-ray diffraction(PXRD)results indicate that the increasing strontium doping causes a structural transition from tetragonal to cubic phase,but the microscopic data validate substantial compositional and microstructural inhomogeneities in strontium doped BTO nanoparticles.Our work provides new insights into the structure of doped BTO NPs and will facilitate the materials design for next-generation high-density nano-dielectric devices.