One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in inte...In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.展开更多
The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies ha...The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem.展开更多
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca...How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study.展开更多
Proactive scheduling based on expected value model is an effective method to develop robust schedules in consideration of minimizing project cost caused by deviations between realized and planed activity starting time...Proactive scheduling based on expected value model is an effective method to develop robust schedules in consideration of minimizing project cost caused by deviations between realized and planed activity starting times.However,these schedules may be realized with low probabilities.In this paper,a novel model based on dependent-chance programming(DCP) is proposed,considering probability as well as solution robustness.A hybrid intelligent algorithm integrating stochastic simulation and genetic algorithm(GA)is designed to solve the proposed model.Moreover,a numerical example is conducted to reveal the effectiveness of the proposed model and the algorithm.展开更多
Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the...Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current production field. However,when performing this integrated optimization,the uncertainty of processing time is a realistic key point that cannot be neglected. Thus,this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize the maximum fuzzy completion time. Compared with the conventional IPPS problem,FIPPS considers the fuzzy process time in the uncertain production environment,which is more practical and realistic. However,it is difficult to solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem,this paper formulates a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms evolve in various directions and collaborate in a certain number of iterations. Moreover,the critical path searching method is introduced according to the triangular fuzzy number,allowing for the calculation of rules to enhance the local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms,the results obtained by MSCOA show significant advantages,thus proving its effectiveness in solving the FIPPS problem.展开更多
Automated Guided Vehicle(AGV)scheduling problem is an emerging research topic in the recent literature.This paper studies an integrated scheduling problem comprising task assignment and path planning for AGVs.To reduc...Automated Guided Vehicle(AGV)scheduling problem is an emerging research topic in the recent literature.This paper studies an integrated scheduling problem comprising task assignment and path planning for AGVs.To reduce the transportation cost of AGVs,this work also proposes an optimization method consisting of the total running distance,total delay time,and machine loss cost of AGVs.A mathematical model is formulated for the problem at hand,along with an improved Discrete Invasive Weed Optimization algorithm(DIWO).In the proposed DIWO algorithm,an insertion-based local search operator is developed to improve the local search ability of the algorithm.A staggered time departure heuristic is also proposed to reduce the number of AGV collisions in path planning.Comprehensive experiments are conducted,and 100 instances from actual factories have proven the effectiveness of the optimization method.展开更多
This paper addresses the integrated Earth observation satellite scheduling problem. It is a complicated problem because observing and downloading operations are both involved. We use an acyclic directed graph model to...This paper addresses the integrated Earth observation satellite scheduling problem. It is a complicated problem because observing and downloading operations are both involved. We use an acyclic directed graph model to describe the observing and downloading integrated scheduling problem.Based on the model which considering energy constraints and storage capacity constraints, we develop an efficient solving method using a novel quantum genetic algorithm. We design a new encoding and decoding scheme that can generate feasible solution and increase the diversity of the population.The results of the simulation experiments show that the proposed method solves the integrated Earth observation satellite scheduling problem with good performance and outperforms the genetic algorithm and greedy algorithm on all instances.展开更多
For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the com...For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatch- ing rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.展开更多
In many planning situations, computation itself becomes a resource to be planned and scheduled. We model such computational resources as conventional resources which are used by control-flow actions, e.g., to direc...In many planning situations, computation itself becomes a resource to be planned and scheduled. We model such computational resources as conventional resources which are used by control-flow actions, e.g., to direct the planning process. Control-flow actions and conventional actions are planned/scheduled in an integrated way and can interact with each other. Control-flow actions are then executed by the planning engine itself. The approach is illustrated by examples, e.g., for hierarchical planning, in which tasks that are temporally still far away impose only rough constraints on the current schedule, and control-flow tasks ensure that these tasks are refined as they approach the current time. Using the same mechanism, anytime algorithms can change appropriate search methods or parameters over time, and problems like scheduling critical time-outs for garbage collection can be made part of the planning itself.展开更多
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金Project(BK20201162)supported by the General Program of Natural Science Foundation of Jiangsu Province,ChinaProject(JC2019126)supported by the Science and Technology Plan Fundamental Scientific Research Funding Project of Nantong,China+1 种基金Project(CE20205045)supported by the Changzhou Science and Technology Support Plan(Social Development),ChinaProject(51875171)supported by the National Nature Science Foundation of China。
文摘In view of the fact that traditional job shop scheduling only considers a single factor, which affects the effect of resource allocation, the dual-resource integrated scheduling problem between AGV and machine in intelligent manufacturing job shop environment was studied. The dual-resource integrated scheduling model of AGV and machine was established by comprehensively considering constraints of machines, workpieces and AGVs. The bidirectional single path fixed guidance system based on topological map was determined, and the AGV transportation task model was defined. The improved A* path optimization algorithm was used to determine the optimal path, and the path conflict elimination mechanism was described. The improved NSGA-Ⅱ algorithm was used to determine the machining workpiece sequence, and the competition mechanism was introduced to allocate AGV transportation tasks. The proposed model and method were verified by a workshop production example, the results showed that the dual resource integrated scheduling strategy of AGV and machine is effective.
基金Supported by National Key R&D Program of China (Grant No. 2019YFB1704603)National Natural Science Foundation of China (Grant Nos. U21B2029 and 51825502)。
文摘The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem.
基金supported by the National Natural Science Foundation of China(71401131)the MOE(Ministry of Education in China)Project of Humanities and Social Sciences(13XJC630011)the Ministry of Education Research Fund for the Doctoral Program of Higher Education(20120184120040)
文摘How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study.
基金National Natural Science Foundations of China(Nos.71371141,71001080)
文摘Proactive scheduling based on expected value model is an effective method to develop robust schedules in consideration of minimizing project cost caused by deviations between realized and planed activity starting times.However,these schedules may be realized with low probabilities.In this paper,a novel model based on dependent-chance programming(DCP) is proposed,considering probability as well as solution robustness.A hybrid intelligent algorithm integrating stochastic simulation and genetic algorithm(GA)is designed to solve the proposed model.Moreover,a numerical example is conducted to reveal the effectiveness of the proposed model and the algorithm.
文摘Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current production field. However,when performing this integrated optimization,the uncertainty of processing time is a realistic key point that cannot be neglected. Thus,this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize the maximum fuzzy completion time. Compared with the conventional IPPS problem,FIPPS considers the fuzzy process time in the uncertain production environment,which is more practical and realistic. However,it is difficult to solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem,this paper formulates a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms evolve in various directions and collaborate in a certain number of iterations. Moreover,the critical path searching method is introduced according to the triangular fuzzy number,allowing for the calculation of rules to enhance the local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms,the results obtained by MSCOA show significant advantages,thus proving its effectiveness in solving the FIPPS problem.
基金supported by the National Natural Science Foundation of China(Nos.62273221 and 52205529)the Discipline with Strong Characteristics of Liaocheng University Intelligent Science and Technology(No.319462208).
文摘Automated Guided Vehicle(AGV)scheduling problem is an emerging research topic in the recent literature.This paper studies an integrated scheduling problem comprising task assignment and path planning for AGVs.To reduce the transportation cost of AGVs,this work also proposes an optimization method consisting of the total running distance,total delay time,and machine loss cost of AGVs.A mathematical model is formulated for the problem at hand,along with an improved Discrete Invasive Weed Optimization algorithm(DIWO).In the proposed DIWO algorithm,an insertion-based local search operator is developed to improve the local search ability of the algorithm.A staggered time departure heuristic is also proposed to reduce the number of AGV collisions in path planning.Comprehensive experiments are conducted,and 100 instances from actual factories have proven the effectiveness of the optimization method.
基金Supported by the National Natural Science Foundation of China(71671059,71401048,71472058,71521001)
文摘This paper addresses the integrated Earth observation satellite scheduling problem. It is a complicated problem because observing and downloading operations are both involved. We use an acyclic directed graph model to describe the observing and downloading integrated scheduling problem.Based on the model which considering energy constraints and storage capacity constraints, we develop an efficient solving method using a novel quantum genetic algorithm. We design a new encoding and decoding scheme that can generate feasible solution and increase the diversity of the population.The results of the simulation experiments show that the proposed method solves the integrated Earth observation satellite scheduling problem with good performance and outperforms the genetic algorithm and greedy algorithm on all instances.
文摘For increasing the overall performance of modem manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatch- ing rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
文摘In many planning situations, computation itself becomes a resource to be planned and scheduled. We model such computational resources as conventional resources which are used by control-flow actions, e.g., to direct the planning process. Control-flow actions and conventional actions are planned/scheduled in an integrated way and can interact with each other. Control-flow actions are then executed by the planning engine itself. The approach is illustrated by examples, e.g., for hierarchical planning, in which tasks that are temporally still far away impose only rough constraints on the current schedule, and control-flow tasks ensure that these tasks are refined as they approach the current time. Using the same mechanism, anytime algorithms can change appropriate search methods or parameters over time, and problems like scheduling critical time-outs for garbage collection can be made part of the planning itself.