This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina...With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.展开更多
An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.Th...An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.展开更多
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ...Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.展开更多
A robust control strategy using the second-order integral sliding mode control(SOISMC)based on the variable speed grey wolf optimization(VGWO)is proposed.The aim is to maximize the wind power extraction of wind turbin...A robust control strategy using the second-order integral sliding mode control(SOISMC)based on the variable speed grey wolf optimization(VGWO)is proposed.The aim is to maximize the wind power extraction of wind turbine.Firstly,according to the uncertainty model of wind turbine,a SOISMC torque controller with fast convergence speed,strong robustness and effective chattering reduction is designed,which ensures that the torque controller can effectively track the reference speed.Secondly,given the strong local search ability of the grey wolf optimization(GWO)and the fast convergence speed and strong global search ability of the particle swarm optimization(PSO),the speed component of PSO is introduced into GWO,and VGWO with fast convergence speed,high solution accuracy and strong global search ability is used to optimize the parameters of wind turbine torque controller.Finally,the simulation is implemented based on Simulink/SimPowerSystem.The results demonstrate the effectiveness of the proposed strategy under both external disturbance and model uncertainty.展开更多
A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees...The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.展开更多
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes...In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
This paper proposes a robust integral sliding mode (RISM) manifold and the corresponding stabilization control law for uncertain systems with multiple time-varying time delays based on the techniques of linear matrix ...This paper proposes a robust integral sliding mode (RISM) manifold and the corresponding stabilization control law for uncertain systems with multiple time-varying time delays based on the techniques of linear matrix inequalities (LMI). The sufficient condition for the existence of the RISM manifold is given in terms of LMI, and then, the sliding mode control (SMC) law that can keep the system state on the RISM manifold from the initial time moment is developed. The efficiency and feasibility of the results are illustrated by a numerical example.展开更多
The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding ...The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.展开更多
This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Rap...This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Raphson estimator has been considered for exact estimation of effective wind speed.The main objective of this work is to extract maximum energy from the wind at below rated wind speed while reducing drive train oscillation.In order to achieve the above objectives,VSWT should operate close to the optimal power coefficient.The generator torque is considered as the control input to achieve maximum energy capture.From the literature,it is clear that existing linear and nonlinear control techniques suffer from poor tracking of WT dynamics,increased power loss and complex control law.In addition,they are not robust with respect to input disturbances.In order to overcome the above drawbacks,adaptive fuzzy integral sliding mode control(AFISMC)is proposed for VSWT control.The proposed controller is tested with different types of disturbances and compared with other nonlinear controllers such as sliding mode control and integral sliding mode control.The result shows the better performance of AFISMC and its robustness to input disturbances.In this paper,the discontinuity in integral sliding mode controller is smoothed by using hyperbolic tangent function,and the sliding gain is adapted using a fuzzy technique which makes the controller more robust.展开更多
For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly...For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.展开更多
In this paper,an intelligent fractional-order integral sliding mode control(FOISMC)strategy based on an improved cascade observer is proposed.First,an FOISMC strategy is designed to control a permanent magnet synchron...In this paper,an intelligent fractional-order integral sliding mode control(FOISMC)strategy based on an improved cascade observer is proposed.First,an FOISMC strategy is designed to control a permanent magnet synchronous motor.It has good tracking performance,is strongly robust,and can effectively reduce chattering.The proposed FOISMC strategy associates strong points of the integral action(which can eliminate steady-state tracking errors)and the fractional calculus(which is flexible).Second,an improved cascade observer is proposed to detect the rotor information with a smaller observation error.The proposed observer combines an adaptive sliding mode observer and an extended high-gain observer.In addition,an improved variable-speed grey wolf optimization algorithm is designed to enhance controller parameters.The effectiveness of the strategy is tested using simulations and an experiment involving model uncertainty and external disturbance.展开更多
In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling e...In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling error in order to ensure position synchronization of dual-arm manipulators.The design objective of the proposed controller is to ensure stability as well as to synchronize the movement of both arms while maintaining the trajectory as desired.The integral sliding mode eliminates the reaching phase and guarantees robustness throughout the whole operating period.Additionally,a low pass filter is used to smoothen the discontinuous element and minimize unwanted chattering.Lyapunov stability theory is utilized to prove the asymptotic stability of the controlled system.Simulation studies are performed to validate the proposed controller′s effectiveness.Also,to investigate the possibility of realizing the proposed dynamic control method in practical applications,experiments are conducted on a 14DoF coordinated links(COOL)dual-arm robotic manipulator system.Experimental evidence indicates adequate efficiency in trajectory tracking and guarantees robustness in the presence of parametric uncertainty and external disturbance.展开更多
This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optima...This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optimal CNF control is first designed as a nominal control to yield high tracking speed and low overshoot. The selection of all the tuning parameters for the CNF control law is turned into a minimization problem and solved automatically by particle swarm optimization (PSO) algorithm. Subsequently, the discontinuous control law is introduced to reject matched disturbances. Then, the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the discontinuous control law. The effectiveness of the optimal ISM-CNF controller is verified by comparing with a step by step designed one. High tracking performance is achieved by applying the optimal ISM-CNF controller to the tracking control of the micromirror.展开更多
Designing a robust active queue management(RAQM)is mandatory to avoid congestion in networks with wireless access links,because transmission control protocol(TCP)can detect con-gestion after its occurrence in a commun...Designing a robust active queue management(RAQM)is mandatory to avoid congestion in networks with wireless access links,because transmission control protocol(TCP)can detect con-gestion after its occurrence in a communication network and wireless links suffer from bottleneck capacity variations caused by fading and packet error rate(PER)in the acknowledgement pack-ets.Furthermore,the average window size cannot be measured explicitly from the output signal and input and state delay are imposed to a network,which complicate theRAQMdesign problem in nonlinear models.So,the main contribution of this study is to design a robust observer based control procedure based on integral sliding mode protocol to estimate the average window size,to control congestion in a TCP/RAQM network and to compensate input and state delay.Sim-ulation results via professional simulator NS-2 and SIMULINK confirm that the procedure can effectively estimate the window size and can robustly avoid congestion.展开更多
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ...An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.展开更多
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ...A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed.
基金supported by the Joint Equipment Fund of the Ministry of Education(6141A02022340)
文摘An integral sliding mode guidance law(ISMGL)combined with the advantages of the integral sliding mode control(SMC)method is designed to address maneuvering target interception problems with impact angle constraints.The relative motion equation of the missile and the target considering the impact angle constraint is established in the longitudinal plane,and an integral sliding mode surface is constructed.The proposed guidance law resolves the existence of a steady-state error problem in the traditional SMC.Such a guidance law ensures that the missile hits the target with an ideal impact angle in finite time and the missile is kept highly robust throughout the interception process.By adopting the dynamic surface control method,the ISMGL is designed considering the impact angle constraints and the autopilot dynamic characteristics.According to the Lyapunov stability theorem,all states of the closed-loop system are finally proven to be uniformly bounded.Simulation results are compared with the general sliding mode guidance law and the trajectory shaping guidance law,and the findings verify the effectiveness and superiority of the ISMGL.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51521065)
文摘Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers.
基金This work was supported by the National Natural Science Foundation of China(No.51876089)the Fundamental Research Funds for the Central Universities(No.kfjj20190205).
文摘A robust control strategy using the second-order integral sliding mode control(SOISMC)based on the variable speed grey wolf optimization(VGWO)is proposed.The aim is to maximize the wind power extraction of wind turbine.Firstly,according to the uncertainty model of wind turbine,a SOISMC torque controller with fast convergence speed,strong robustness and effective chattering reduction is designed,which ensures that the torque controller can effectively track the reference speed.Secondly,given the strong local search ability of the grey wolf optimization(GWO)and the fast convergence speed and strong global search ability of the particle swarm optimization(PSO),the speed component of PSO is introduced into GWO,and VGWO with fast convergence speed,high solution accuracy and strong global search ability is used to optimize the parameters of wind turbine torque controller.Finally,the simulation is implemented based on Simulink/SimPowerSystem.The results demonstrate the effectiveness of the proposed strategy under both external disturbance and model uncertainty.
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
基金Project(2013ZX04008011)supported by the National Science and Technology Major Projects of ChinaProject(51675100)supported by the National Natural Science Foundation of China
文摘The design of servo controllers for flexible ball screw drives with matched and mismatched disturbances and uncertainties is focused to improve the tracking performance and bandwidth of ball screw drives.A two degrees of freedom mass model is established based on the axial vibration characteristics of the transport ball screw,and the controller of an adaptive integral sliding mode is proposed combining the optimal design of state feedback gain matrix K to restrain the vibration and the matched disturbances and uncertainties.Then for the counteraction of the mismatched disturbances and uncertainties,a nonlinear disturbance observer is also developed.The trajectory tracking performance experiments and bandwidth analysis were conducted on experimental setup with the proposed control method.It is proved that the adaptive integral sliding mode controller has a high tracking performance and bandwidth especially for the axial vibration characteristics model of ball screw drives.And the ball screw tracking accuracy also has a considerable improvement with the application of the proposed nonlinear disturbance observer.
基金Supported by the National Natural Science Foundation of China(51475044)。
文摘In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
基金supported by the Science and Research Foundation of North China Institute of Science and Technology
文摘This paper proposes a robust integral sliding mode (RISM) manifold and the corresponding stabilization control law for uncertain systems with multiple time-varying time delays based on the techniques of linear matrix inequalities (LMI). The sufficient condition for the existence of the RISM manifold is given in terms of LMI, and then, the sliding mode control (SMC) law that can keep the system state on the RISM manifold from the initial time moment is developed. The efficiency and feasibility of the results are illustrated by a numerical example.
文摘The extraction of maximum power from the solar panels,using the sliding mode control scheme,becomes popular for partial weather atmospheric conditions due to its effective dynamic duty cycle ratio.However,the sliding mode control scheme was sophisticated with single integral and double integral sliding mode control scheme,which offer enhanced maximum power extraction and support enhanced solar panel efficiency in partial weather conditions.The operation of the sliding mode control scheme depends on the selection of a sliding surface selection based on the atmospheric weather condition,which enables the effective sliding duty cycle ratio operation for the DC/DC boost converter.The duty cycle ratio of the sliding mode control resembles the usual dynamic behavior to achieve enhanced efficiency compared to the various maximum power point tracking(MPPT)schemes.The major limitation of the sliding mode control scheme is to achieve the steady state voltage error of the solar panel in minimum settling time duration.The single integral sliding mode control scheme achieves the expected steady state voltage error limit but fails to achieve minimum settling time duration.Hence,the single integral sliding mode control is extended to a double integral sliding mode control scheme to achieve both steady state voltage error limits within the minimum settling time duration.This double integral sliding mode control scheme allows us to obtain the higher sliding surface duty cycle ratio which acts as the input signal to the boost converter.This activates the enhanced stable and reliable system operation,and nullifies the lacuna of maximum solar panel efficiency under partial weather conditions.Hence,this paper aims to present the design and performance operation of the double integral sliding mode(DISM)MPPT control scheme.To validate the performance analysis of the proposed DISM MPPT control scheme,the MATLAB/Simulink model is designed and verified.Also,the performance analysis of the proposed DISM MPPT control scheme is compared with the sliding mode controller(SMC)scheme and single integral sliding mode controller(SiSMC)scheme.The performance analysis of the proposed double integral sliding mode controller(DISMC)scheme attains 99.10%of efficiency and a very less setting time of 0.035s when compared to other existingmethods.
文摘This paper presents a nonlinear control approach to variable speed wind turbine(VSWT)with a wind speed estimator.The dynamics of the wind turbine(WT)is derived from single mass model.In this work,a modified Newton Raphson estimator has been considered for exact estimation of effective wind speed.The main objective of this work is to extract maximum energy from the wind at below rated wind speed while reducing drive train oscillation.In order to achieve the above objectives,VSWT should operate close to the optimal power coefficient.The generator torque is considered as the control input to achieve maximum energy capture.From the literature,it is clear that existing linear and nonlinear control techniques suffer from poor tracking of WT dynamics,increased power loss and complex control law.In addition,they are not robust with respect to input disturbances.In order to overcome the above drawbacks,adaptive fuzzy integral sliding mode control(AFISMC)is proposed for VSWT control.The proposed controller is tested with different types of disturbances and compared with other nonlinear controllers such as sliding mode control and integral sliding mode control.The result shows the better performance of AFISMC and its robustness to input disturbances.In this paper,the discontinuity in integral sliding mode controller is smoothed by using hyperbolic tangent function,and the sliding gain is adapted using a fuzzy technique which makes the controller more robust.
基金financial support provided by the National Natural Science Foundation of China(Nos.61174037 and 61021002)the Aeronautical Science Foundation of China(No.20140177002)
文摘For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.
基金supported by the National Natural Science Foundation of China(No.51876089)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,China(No.GZKF-202005)。
文摘In this paper,an intelligent fractional-order integral sliding mode control(FOISMC)strategy based on an improved cascade observer is proposed.First,an FOISMC strategy is designed to control a permanent magnet synchronous motor.It has good tracking performance,is strongly robust,and can effectively reduce chattering.The proposed FOISMC strategy associates strong points of the integral action(which can eliminate steady-state tracking errors)and the fractional calculus(which is flexible).Second,an improved cascade observer is proposed to detect the rotor information with a smaller observation error.The proposed observer combines an adaptive sliding mode observer and an extended high-gain observer.In addition,an improved variable-speed grey wolf optimization algorithm is designed to enhance controller parameters.The effectiveness of the strategy is tested using simulations and an experiment involving model uncertainty and external disturbance.
文摘In this study,a simple position synchronization control algorithm based on an integral sliding mode is developed for dualarm robotic manipulator systems.A first-order sliding surface is designed using cross-coupling error in order to ensure position synchronization of dual-arm manipulators.The design objective of the proposed controller is to ensure stability as well as to synchronize the movement of both arms while maintaining the trajectory as desired.The integral sliding mode eliminates the reaching phase and guarantees robustness throughout the whole operating period.Additionally,a low pass filter is used to smoothen the discontinuous element and minimize unwanted chattering.Lyapunov stability theory is utilized to prove the asymptotic stability of the controlled system.Simulation studies are performed to validate the proposed controller′s effectiveness.Also,to investigate the possibility of realizing the proposed dynamic control method in practical applications,experiments are conducted on a 14DoF coordinated links(COOL)dual-arm robotic manipulator system.Experimental evidence indicates adequate efficiency in trajectory tracking and guarantees robustness in the presence of parametric uncertainty and external disturbance.
基金This work was supported by National Natural Science Foundation of China (No. 61374036) and the Fundamental Research Funds for the Central Universities (No. SCUT 2014ZM0035).
文摘This paper presents an optimization method of designing the integral sliding mode (ISM) based composite nonlinear feedback (CNF) controller for a class of low order linear systems with input saturation. The optimal CNF control is first designed as a nominal control to yield high tracking speed and low overshoot. The selection of all the tuning parameters for the CNF control law is turned into a minimization problem and solved automatically by particle swarm optimization (PSO) algorithm. Subsequently, the discontinuous control law is introduced to reject matched disturbances. Then, the optimal ISM-CNF control law is achieved as the sum of the optimal CNF control law and the discontinuous control law. The effectiveness of the optimal ISM-CNF controller is verified by comparing with a step by step designed one. High tracking performance is achieved by applying the optimal ISM-CNF controller to the tracking control of the micromirror.
文摘Designing a robust active queue management(RAQM)is mandatory to avoid congestion in networks with wireless access links,because transmission control protocol(TCP)can detect con-gestion after its occurrence in a communication network and wireless links suffer from bottleneck capacity variations caused by fading and packet error rate(PER)in the acknowledgement pack-ets.Furthermore,the average window size cannot be measured explicitly from the output signal and input and state delay are imposed to a network,which complicate theRAQMdesign problem in nonlinear models.So,the main contribution of this study is to design a robust observer based control procedure based on integral sliding mode protocol to estimate the average window size,to control congestion in a TCP/RAQM network and to compensate input and state delay.Sim-ulation results via professional simulator NS-2 and SIMULINK confirm that the procedure can effectively estimate the window size and can robustly avoid congestion.
文摘An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.
基金supported by Major State Basic Research Development Program(2012CB720000)National Natural Science Foundation of China(11372034)Innovative Research Team of Beijing Institute of Technology
文摘A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.