In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and cont...In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.展开更多
Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of ...Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.展开更多
Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system ...Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller.展开更多
To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa ...To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa to 1 000hPa with high accuracy by proportional-integral-derivative(PID)control quickly,and it can also generate various relative humidity by two-pressure control.The results show that this instrument can reach controlled pressure quickly.And it works well with the minimum average pressure difference,and the fluctuation is±0.02hPa at 500hPa.And it can keep in a stable status for a long time.It works well in performance testing of pressure sensors.The structure of the system is simple,takes small investment,and can be operated conveniently.展开更多
Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing...Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.展开更多
By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separ...By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.展开更多
Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious us...Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious user can forge proof of inexistent system states. This paper proposes a trustworthy integrity measurement architecture, BBACIMA, through enforcing behavior-based access control for trusted platform module (TPM). BBACIMA introduces a TPM reference monitor (TPMRM) to ensure the trustworthiness of integrity measurement. TPMRM enforces behavior-based access control for the TPM and is isolated from other entities which may be malicious. TPMRM is the only entity manipulating TPM directly and all PCR (platform configuration register) operation requests must pass through the security check of it so that only trusted processes can do measurement and produce the proof of system states. Through these mechanisms malicious user can not enforce attack which is feasible in current measurement architectures.展开更多
Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the to...Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the topology, synchronization between nodes has become a critical issue which needs to be studied. The existing synchronization methods largely depend on the complex communication protocol. Therefore, this paper has proposed a method of automatic measurement and compensation of synchronization delay, and analyzed its operating principle and implementation procedure in detail. The results obtained from the experiments prove the proposed method to be correct, effective and practicable.展开更多
The existence of linear quadratic optimal control of ship automatic steering instruments is studied. Firstly, the sufficient conditions for the quadratic integrability of the solutions of linear second order time-vari...The existence of linear quadratic optimal control of ship automatic steering instruments is studied. Firstly, the sufficient conditions for the quadratic integrability of the solutions of linear second order time-variant differential equations are developed. Secondly, the optimal control form of the ship automatic steering instrument is obtained by using the dynamic programming method, which guarantees a minimal ship sway range, during long-distance navigation, by using as little energy as possible. Finally, based on the above mentioned sufficient conditions, the conditions for the realization of optimal control are obtained, which provides a foundation for choosing the weighted coefficients for optimal control in engineering.展开更多
Automatic monitoring data of pollution sources is an important basis for environmental supervision and management.At present,it is difficult to guarantee the quality of automatic monitoring data of pollution sources,a...Automatic monitoring data of pollution sources is an important basis for environmental supervision and management.At present,it is difficult to guarantee the quality of automatic monitoring data of pollution sources,and it is difficult to play the role of the monitoring data.In response to this problem,the factors influencing the quality of automatic monitoring data of pollution sources were analyzed in detail,and technical assurance measures for the quality of automatic monitoring data of pollution sources in Shandong Province were studied.Besides,the dynamic management and control idea of automatic monitoring of pollution sources was proposed,and specific technical measures were analyzed from five aspects of standardizing automatic monitoring equipment of pollution sources,improving the data collection and transmission system,establishing a mechanism for reporting operating status information of monitoring equipment,setting alarm rules and alarm processing procedures,and statistically analyzing the operating status of the equipment.Practice has proved that the dynamic management and control system can effectively ensure the quality of automatic monitoring data of pollution sources.展开更多
A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
基金National M ajor Scientific Instruments and Equipment Development Special Funds,China(No.2011YQ030113)
文摘In order to improve the compatibility of laser-induced breakdown spectroscopy( LIBS) instrument for different types of parts and optimize the analysis and testing processes,a modularized automatic measurement and control system was developed. Based on the characteristics of each LIBS component, the following development steps have been performed:( 1) a summary of characteristic parameters of the component are established;( 2) the integration mechanism of multiple electrical interfaces is designed;( 3) the component control instruction library is developed. The experimental results indicate that the measurement and control system is compatible with most LIBS parts in the market.Spectrometer and laser can be compatible with at least three different types of parts. In addition,a multilayer iterative testing process is designed to improve the efficiency of optimization process of LIBS parameters. The experimental results have shown that the automatic optimization of the delay time compared to the manual testing provides significant gain in testing efficiency. The range of delay time in the experiments is 1. 28 to 10. 28 μs and the step value is 1,0. 5,0. 2 and 0. 1 μs. The gain in testing efficiency has been found to be increased by 73. 76%,75. 93%,78. 81% and 80. 42%,respectively.
基金Supported by Science and Technology Program of Guangxi Province(GK AD19245169,GK AD18281072,GK AA17202037,GK AB16380164)。
文摘Integration of water, fertilizer and pesticide is the final stage of agricultural development, which improves the utilization efficiency of water, fertilizer and pesticide. Starting from the design and realization of water, fertilizer and pesticide integrated automatic control device, the paper discusses selection and application of fertilizer pesticides, use procedure, water, fertilizer and pesticide saving effect and receptive crowd in the application process of modern planting industry, so as to provide the basis for promotion and popularization of water, fertilizer and pesticide integration.
文摘Essentially, it is significant to supply the consumer with reliable and sufficient power. Since, power quality is measured by the consistency in frequency and power flow between control areas. Thus, in a power system operation and control,automatic generation control(AGC) plays a crucial role. In this paper, multi-area(Five areas: area 1, area 2, area 3, area 4 and area 5) reheat thermal power systems are considered with proportional-integral-derivative(PID) controller as a supplementary controller. Each area in the investigated power system is equipped with appropriate governor unit, turbine with reheater unit, generator and speed regulator unit. The PID controller parameters are optimized by considering nature bio-inspired firefly algorithm(FFA). The experimental results demonstrated the comparison of the proposed system performance(FFA-PID)with optimized PID controller based genetic algorithm(GAPID) and particle swarm optimization(PSO) technique(PSOPID) for the same investigated power system. The results proved the efficiency of employing the integral time absolute error(ITAE) cost function with one percent step load perturbation(1 % SLP) in area 1. The proposed system based FFA achieved the least settling time compared to using the GA or the PSO algorithms, while, it attained good results with respect to the peak overshoot/undershoot. In addition, the FFA performance is improved with the increased number of iterations which outperformed the other optimization algorithms based controller.
基金National Basic Research Program of China(No.2011CB302104)Special Fund for Public Welfare(No.GYHY201004004)
文摘To measure the performance of high precision air-pressure sensors in below normal pressure,an automatic measurement instrument has been designed and implemented.It can simulate environment of low pressure from 300hPa to 1 000hPa with high accuracy by proportional-integral-derivative(PID)control quickly,and it can also generate various relative humidity by two-pressure control.The results show that this instrument can reach controlled pressure quickly.And it works well with the minimum average pressure difference,and the fluctuation is±0.02hPa at 500hPa.And it can keep in a stable status for a long time.It works well in performance testing of pressure sensors.The structure of the system is simple,takes small investment,and can be operated conveniently.
文摘Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.
文摘By using the precise integration method, the numerical solution of linear quadratic Gaussian (LQG) optimal control problem was discussed. Based on the separation principle, the LQG central problem decomposes, or separates, into an optimal state-feedback control problem and an optimal state estimation problem. That is the off-line solution of two sets of Riccati differential equations and the on-line integration solution of the state vector from a set of time-variant differential equations. The present algorithms are not only appropriate to solve the two-point boundary-value problem and the corresponding Riccati differential equation, but also can be used to solve the estimated state from the time-variant differential equations. The high precision of precise integration is of advantage for the control and estimation. Numerical examples demonstrate the high precision and effectiveness of the algorithm.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)
基金the National High Technology Research and Development Plan of China (2007AA01Z412)the National Key Technology R&D Program of China (2006BAH02A02)the National Natural Science Foundation of China (60603017)
文摘Two limitations of current integrity measurement architectures are pointed out: (1) a reference value is required for every measured entity to verify the system states, as is impractical however; (2) malicious user can forge proof of inexistent system states. This paper proposes a trustworthy integrity measurement architecture, BBACIMA, through enforcing behavior-based access control for trusted platform module (TPM). BBACIMA introduces a TPM reference monitor (TPMRM) to ensure the trustworthiness of integrity measurement. TPMRM enforces behavior-based access control for the TPM and is isolated from other entities which may be malicious. TPMRM is the only entity manipulating TPM directly and all PCR (platform configuration register) operation requests must pass through the security check of it so that only trusted processes can do measurement and produce the proof of system states. Through these mechanisms malicious user can not enforce attack which is feasible in current measurement architectures.
文摘Currently, the high-speed serial fiber-optic ring net communication is a main method for performing the distributed control network topology and control mode. Because of a network transmission delay inherent in the topology, synchronization between nodes has become a critical issue which needs to be studied. The existing synchronization methods largely depend on the complex communication protocol. Therefore, this paper has proposed a method of automatic measurement and compensation of synchronization delay, and analyzed its operating principle and implementation procedure in detail. The results obtained from the experiments prove the proposed method to be correct, effective and practicable.
基金supported by National Nature Science Foundation of P.R.China(No.69974032).
文摘The existence of linear quadratic optimal control of ship automatic steering instruments is studied. Firstly, the sufficient conditions for the quadratic integrability of the solutions of linear second order time-variant differential equations are developed. Secondly, the optimal control form of the ship automatic steering instrument is obtained by using the dynamic programming method, which guarantees a minimal ship sway range, during long-distance navigation, by using as little energy as possible. Finally, based on the above mentioned sufficient conditions, the conditions for the realization of optimal control are obtained, which provides a foundation for choosing the weighted coefficients for optimal control in engineering.
文摘Automatic monitoring data of pollution sources is an important basis for environmental supervision and management.At present,it is difficult to guarantee the quality of automatic monitoring data of pollution sources,and it is difficult to play the role of the monitoring data.In response to this problem,the factors influencing the quality of automatic monitoring data of pollution sources were analyzed in detail,and technical assurance measures for the quality of automatic monitoring data of pollution sources in Shandong Province were studied.Besides,the dynamic management and control idea of automatic monitoring of pollution sources was proposed,and specific technical measures were analyzed from five aspects of standardizing automatic monitoring equipment of pollution sources,improving the data collection and transmission system,establishing a mechanism for reporting operating status information of monitoring equipment,setting alarm rules and alarm processing procedures,and statistically analyzing the operating status of the equipment.Practice has proved that the dynamic management and control system can effectively ensure the quality of automatic monitoring data of pollution sources.
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.