The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of ...The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.展开更多
The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained t...The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.展开更多
Roll flattening theory is an important part of plate shape control theories for 20-high mill. In order to improve the accuracy of roll flattening calculation for 20-high mill, a new and more accurate roll flattening m...Roll flattening theory is an important part of plate shape control theories for 20-high mill. In order to improve the accuracy of roll flattening calculation for 20-high mill, a new and more accurate roll flattening model was proposed. In this model, the roll barrel was considered as a finite length semi-infinite body. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distributed force was obtained and an accurate roll flattening model was established. Coupled with roll bending model and strip plastic deformation, a new and more accurate plate control model for 20-high mill was established. Moreover, the effects of the first intermediate roll taper angle and taper length were analyzed. The tension distribution calculated by analytical model was consistent with the experimental results.展开更多
文摘The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented. Existence and uniqueness of optimal solutions is proved.A collective Gauss-Seidel scheme and a multigrid scheme are discussed. Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
文摘The morphing technology of hypersonic vehicle improved the flight performance by changing aerodynamic characteristics with shape deformations,but the design of guidance and control system with morphing laws remained to be explored.An Integrated of Guidance,Control and Morphing(IGCM)method for Hypersonic Morphing Vehicle(HMV)was developed in this paper.The IGCM method contributed to an effective solution of morphing characteristic to improve flight performance and reject the disturbance for guidance and control system caused by the morphing system for HMV in gliding phase.The IGCM models were established based on the motion models and aerodynamic models of the variable span vehicle.Then the IGCM method was designed by adaptive block dynamic surface back-stepping method with stability proof.The parallel controlled simulations’results showed the effectiveness in accomplishing the flight mission of IGCM method in glide phase with smaller terminal errors.The velocity loss of HMV was reduced by 32.8%which inferred less flight time and larger terminal flight velocity than invariable span vehicle.Under the condition of large deviations of aerodynamic parameters and atmospheric density,the robustness of IGCM method with variable span was verified.
基金Item Sponsored by National Natural Science Foundation of China(51474190)Natural Sceince Foundation of Hebei Province of China(E2015203311)
文摘Roll flattening theory is an important part of plate shape control theories for 20-high mill. In order to improve the accuracy of roll flattening calculation for 20-high mill, a new and more accurate roll flattening model was proposed. In this model, the roll barrel was considered as a finite length semi-infinite body. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distributed force was obtained and an accurate roll flattening model was established. Coupled with roll bending model and strip plastic deformation, a new and more accurate plate control model for 20-high mill was established. Moreover, the effects of the first intermediate roll taper angle and taper length were analyzed. The tension distribution calculated by analytical model was consistent with the experimental results.