The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will ...The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will greatly deepen the coupling of the electricity-gas integrated energy system,improve the flexibility and safety of the operation of the power system,and bring a deal of benefits to the power system.On this background,an optimal dispatch model of RIES combined cold,heat,gas and electricity with SOP is proposed.Firstly,RIES architecture with SOP and P2G is designed and its mathematical model also is built.Secondly,on the basis of considering the optimal scheduling of combined cold,heat,gas and electricity,the optimal scheduling model for RIES was established.After that,the original model is transformed into a mixed-integer second-order cone programming model by using linearization and second-order cone relaxation techniques,and the CPLEX solver is invoked to solve the optimization problem.Finally,the modified IEEE 33-bus systemis used to analyze the benefits of SOP,P2G technology and lithium bromide absorption chillers in reducing systemnetwork loss and cost,as well as improving the system’s ability to absorb wind and solar and operating safety.展开更多
With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy...With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.展开更多
In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and ...In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.展开更多
为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优...为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。展开更多
电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热...电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热综合需求响应模型;结合碳交易机制背景,考虑P2G对碳交易机制的激励作用,建立系统综合碳交易成本模型;以运行成本最小和弃风量最小为目标函数,建立了综合能源系统低碳调度模型,并通过三种场景对比验证所提模型的有效性。通过对需求响应调节能力、机组出力情况、碳价以及弃风惩罚系数分析发现,需求响应有效提高了系统经济型与用能灵活性;考虑综合碳交易成本模型下,合理制定碳价及弃风惩罚系数能有效促进系统低碳经济运行。展开更多
为了提升热、电、气综合能源系统(Integrated Energy System,IES)的经济效益,文章以IES总成本最小构建了综合能源系统经济调度模型。采用逆混沌映射和非线性惯性权重对蜻蜓算法进行改进,使改进的蜻蜓算法(Improved Dragonfly Algorithm,...为了提升热、电、气综合能源系统(Integrated Energy System,IES)的经济效益,文章以IES总成本最小构建了综合能源系统经济调度模型。采用逆混沌映射和非线性惯性权重对蜻蜓算法进行改进,使改进的蜻蜓算法(Improved Dragonfly Algorithm,IDA)具备更好地寻优性能。采用IDA算法对综合能源系统经济调度模型进行求解,并将求解结果与常用优化算法进行对比,结果表明,IDA算法在进行综合能源系统经济调度时的优化效果更好,在该调度方案下,各设备出力合理,IES总成本也达到了最小,实现了IES的经济调度。展开更多
基金Project Supported by National Natural Science Foundation of China(51777193).
文摘The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will greatly deepen the coupling of the electricity-gas integrated energy system,improve the flexibility and safety of the operation of the power system,and bring a deal of benefits to the power system.On this background,an optimal dispatch model of RIES combined cold,heat,gas and electricity with SOP is proposed.Firstly,RIES architecture with SOP and P2G is designed and its mathematical model also is built.Secondly,on the basis of considering the optimal scheduling of combined cold,heat,gas and electricity,the optimal scheduling model for RIES was established.After that,the original model is transformed into a mixed-integer second-order cone programming model by using linearization and second-order cone relaxation techniques,and the CPLEX solver is invoked to solve the optimization problem.Finally,the modified IEEE 33-bus systemis used to analyze the benefits of SOP,P2G technology and lithium bromide absorption chillers in reducing systemnetwork loss and cost,as well as improving the system’s ability to absorb wind and solar and operating safety.
文摘With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.
基金supported in part by the Research Project of Digital Grid Research Institute,China Southern Power Grid(No.YTYZW20010)in part by the Research and Development Program Project in Key Areas of Guangdong Province(No.2021B0101230003)in part by the National Natural Science Foundation of China(No.51907031)。
文摘In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.
文摘为实现沿海区域的海上风电场、海上采气平台和陆上热电联供燃气电厂等多种能源生产子单元的协同化运行,考虑可再生能源出力和氢负荷的随机波动,提出沿海区域综合能源生产单元(coastal integrated energy production units,CIEPU)随机优化调度模型。采用参数化代价函数近似(parametric cost function approximation,PCFA)的动态规划算法求解随机优化调度模型。通过一种基于梯度下降的求解方法--Adadelta法,获得策略函数的一阶信息,并计算梯度平方的指数衰减平均值,以更新策略函数的迭代步长;对随机优化调度模型进行策略参数逼近,从而得到近似最优的策略参数,并逐一时段求解出CIEPU的最优调度计划。最后,以某个CIEPU为例,分析计算结果表明,所提出方法获得的优化调度方案可以提高CIEPU运行的经济性并降低碳排放量,验证了所提方法的准确性和高效性。
文摘电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热综合需求响应模型;结合碳交易机制背景,考虑P2G对碳交易机制的激励作用,建立系统综合碳交易成本模型;以运行成本最小和弃风量最小为目标函数,建立了综合能源系统低碳调度模型,并通过三种场景对比验证所提模型的有效性。通过对需求响应调节能力、机组出力情况、碳价以及弃风惩罚系数分析发现,需求响应有效提高了系统经济型与用能灵活性;考虑综合碳交易成本模型下,合理制定碳价及弃风惩罚系数能有效促进系统低碳经济运行。
文摘为了提升热、电、气综合能源系统(Integrated Energy System,IES)的经济效益,文章以IES总成本最小构建了综合能源系统经济调度模型。采用逆混沌映射和非线性惯性权重对蜻蜓算法进行改进,使改进的蜻蜓算法(Improved Dragonfly Algorithm,IDA)具备更好地寻优性能。采用IDA算法对综合能源系统经济调度模型进行求解,并将求解结果与常用优化算法进行对比,结果表明,IDA算法在进行综合能源系统经济调度时的优化效果更好,在该调度方案下,各设备出力合理,IES总成本也达到了最小,实现了IES的经济调度。