A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to...A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to detect changes in the index of refraction of the medium under analysis. The normal incidence operation eases its integration with optical fibers. The geometry of the arrangement and the material selection are changed to optimize some performance parameters as sensitivity, figure of merit, field enhancement, and spectral width. This optimization takes into account the feasibility of the fabrication. The evaluated results of sensitivity(1020 nm/RIU)and figure of merit(614 RIU^(-1)) are competitive with those previously reported.展开更多
Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integra...Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.展开更多
Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposab...Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).展开更多
This paper reports on the design,fabrication,and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application.This paper mainly aims at two aspects.One is ...This paper reports on the design,fabrication,and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application.This paper mainly aims at two aspects.One is to improve the optical coupling between the laser and modulator;another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator.The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA.Output power at 100mA is more than 10mW.The extinction characteristics,modulation bandwidth,and electrical return loss are measured.3dB bandwidth more than 10GHz is monitored.展开更多
A new S-type of erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with cascaded multilayer medium thin film filter is proposed,this S-type geometry waveguide structure is used to achieve a long ...A new S-type of erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with cascaded multilayer medium thin film filter is proposed,this S-type geometry waveguide structure is used to achieve a long path in a compact chip,and obtained higher gain with lower Er-doped concentration. The cascaded multilayer medium thin film filter is utilized to achieve a broader flattening gain bandwidth.The intrinsical gain spectrum is obtained by solving rate and power propagation equations,the effect of transmittance spectrum of thin film filter on flattening gain is discussed.展开更多
The present study examines the various techniques being used to maintain the integrity of the medical devices,and develops a quantitative framework to list these in the sequence of priority.To achieve the intended obj...The present study examines the various techniques being used to maintain the integrity of the medical devices,and develops a quantitative framework to list these in the sequence of priority.To achieve the intended objective,the study employs the combined procedure of Fuzzy Analytic Network Process(ANP)and Fuzzy Technical for Order Preference by Similarities to Ideal Solution(TOPSIS).We selected fuzzy based decision making techniques for assessing the integrity of medical devices.The suggested methodology was then used for classifying the suitable techniques used to evaluate the integrity of medical devices.Different techniques or the procedures of integrity assessment were ranked according to their satisfaction weights.The rating of the options determined the order of priority for the procedures.As per the findings of the study,among all the options,A1 was assessed to be the most likely option.This means that the integrity of medical devices of A2 is the highest amongst all the chosen alternatives.This analysis will be a corroborative guideline for manufacturers and developers to quantitatively test the integrity of medical devices in order to engineer efficacious devices.The evaluations undertaken with the assistance of the planned procedure are accurate and conclusive.Hence instead of conducting a manual valuation,this experimental study is a better and reliable option for assessing the integrity of the medical devices.展开更多
A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration a...A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.展开更多
Converting low-grade waste heat into usable electricity and storing it simultaneously requires a new technology that realize the directional migration of electrons or ions under temperature difference and enrichment o...Converting low-grade waste heat into usable electricity and storing it simultaneously requires a new technology that realize the directional migration of electrons or ions under temperature difference and enrichment on the electrodes.Although the urgent demand of energy conversion-storage(ECS)has emerged in the field of wearable electronic,achieving the integrated bi-functional device remains challenge due to the different mechanisms of electrical transportation and storage.Here,we report an ionic thermoelectric supercapacitor that relies on the synergistic functions of thermoelectricity and supercapacitor in the thermoelectric ionogel electrolyte and high-performance hydrogel electrodes to enhance the ECS performance under a thermal gradient.The thermoelectric electrolyte is composed of polyacrylamide hydrogel and sodium carboxymethyl cellulose(PMSC),possessing cross-linked network with excellent cation selectivity,while the ionic thermoelectric properties are further improved in the presence of NaCl.The corresponding Seebeck coefficient and ionic conductivity of the NaCl–PMSC electrolyte reach 17.1 mV K^(-1)and 26.8 mS cm^(-1),respectively.Owing to good stretchability of both gel-based electrolyte and electrode,the fullstretchable integrated ECS device,termed ionic thermoelectric supercapacitor,presents promising thermal-charge storage capability(~1.3 mC,ΔT≈10 K),thus holds promise for wearable energy harvesting.展开更多
Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(ca...Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene(2 CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N,C-(2')]iridium(acetylacetonate),(tbt)2 Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The(tbt)2 Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the(tbt)2 Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m^2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 10^11 Jones at a bias of -2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.展开更多
In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the develo...In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.展开更多
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperce...Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).展开更多
Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challeng...Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.展开更多
As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energ...As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage.展开更多
Two-dimensional(2D)van derWaals materials have attracted great interest and facilitated the development of post-Moore electronics owing to their novel physical properties and high compatibility with traditional microf...Two-dimensional(2D)van derWaals materials have attracted great interest and facilitated the development of post-Moore electronics owing to their novel physical properties and high compatibility with traditional microfabrication techniques.Their wafer-scale synthesis has become a critical challenge for large-scale integrated applications.Although the wafer-scale synthesis approaches for some 2D materials have been extensively explored,the preparation of high-quality thin films with well-controlled thickness remains a big challenge.This review focuses on the wafer-scale synthesis of 2D materials and their applications in integrated electronics.Firstly,several representative 2D layered materials including their crystal structures and unique electronic properties were introduced.Then,the current synthesis strategies of 2Dlayeredmaterials at thewafer scale,which are divided into“top-down”and“bottom-up”,were reviewed in depth.Afterwards,the applications of 2D materials wafer in integrated electrical and optoelectronic devices were discussed.Finally,the current challenges and future prospects for 2D integrated electronics were presented.It is hoped that this reviewwill provide comprehensive and insightful guidance for the development of wafer-scale 2D materials and their integrated applications.展开更多
Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the comp...Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.展开更多
We present an all polymer asymmetric Mach-Zehnder interferometer (AMZI) waveguide sensor based on imprinting bonding and laser polishing method. The fabrication methods are compatible with high accuracy waveguide se...We present an all polymer asymmetric Mach-Zehnder interferometer (AMZI) waveguide sensor based on imprinting bonding and laser polishing method. The fabrication methods are compatible with high accuracy waveguide sensing structure. The rectangle waveguide structure of this sensor has three sensing surfaces contacting the test media, and its sensing accuracy can be increased 5 times compared with that of one surface sensing structure. An AMZI device structure is designed. The single mode condition, the length of the sensing arm, and the length deviation between the sensing arm and the reference arm are optimized. The length deviation is optimized to be 19.8 μm in a refractive index range between 1.470 and 1.545. We fabricate the AMZI waveguide by lithography and wet etching method. The imprinting bonding and laser polishing method is proposed and investigated. The insertion loss is between-80.36 dB and-10.63 dB. The average and linear sensitivity are 768.1 dB/RIU and 548.95 dB/RIU, respectively. And the average and linear detection resolution of the sensor are 1.3010-6 RIU (RIU:refractive index unit) and 1.8210-5 RIU, respectively. This sensor has a fast and cost-effective fabrication process which can be used in the cases of requiring portability and disposability.展开更多
An indium tin oxide(ITO) and silicon nitride(Si_(3)N_(4)) assisted compact TE-pass waveguide polarizer based on lithiumniobate-on-insulator is proposed and numerically analyzed.By properly designing the ITO and Si_(3)...An indium tin oxide(ITO) and silicon nitride(Si_(3)N_(4)) assisted compact TE-pass waveguide polarizer based on lithiumniobate-on-insulator is proposed and numerically analyzed.By properly designing the ITO and Si_(3)N_(4) assisted structure and utilizing the epsilon-near-zero effect of ITO,the TM mode is strongly confined in the ITO layer with extremely high loss,while the TE mode is hardly affected and passes through the waveguide with low loss.The simulation results show that the polarizer has an extinction ratio of 22.5 dB and an insertion loss of 0.8 dB at the wavelength of 1.55 μm,and has an operating bandwidth of about 125 nm(from 1540 nm to 1665 nm) for an extinction ratio of>20 dB and an insertion loss of<0.95 dB.Moreover,the proposed device exhibits large fabrication tolerances.More notably,the device is compact,with a length of only 7.5 μm,and is appropriate for on-chip applications.展开更多
We provide an overview of our recent work on developing subwavelength grating (SWG) waveguide devices as an enabling technology for integrated microwave photonics. First, we describe wavelength-selective SWG wavegui...We provide an overview of our recent work on developing subwavelength grating (SWG) waveguide devices as an enabling technology for integrated microwave photonics. First, we describe wavelength-selective SWG waveguide filters, including ring resonators, Bragg gratings, and contradirectional couplers. Second, we discuss the development of an index variable optical true time delay line that exploits spatial diversity in an equal-length waveguide array. These SWG waveguide components are fundamental building blocks for realizing more complex structures for advanced microwave photonic signal processing.展开更多
The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a fo...The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.展开更多
In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings r...In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.展开更多
基金Funding.Ministerio de Economía y Competitividad(MINECO)(TEC2013-40442)Ministry of Higher Education(MOHE)(missions section)
文摘A metallic nanostructured array that scatters radiation toward a thin metallic layer generates surface plasmon resonances for normally incident light. The location of the minimum of the spectral reflectivity serves to detect changes in the index of refraction of the medium under analysis. The normal incidence operation eases its integration with optical fibers. The geometry of the arrangement and the material selection are changed to optimize some performance parameters as sensitivity, figure of merit, field enhancement, and spectral width. This optimization takes into account the feasibility of the fabrication. The evaluated results of sensitivity(1020 nm/RIU)and figure of merit(614 RIU^(-1)) are competitive with those previously reported.
文摘Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.
基金supported by National Key R&D Program of China[2021YFC2301103 and 2022YFE0202600]Shenzhen Science and Technology Program[JSGG20220606142605011].
文摘Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).
文摘This paper reports on the design,fabrication,and performance of an integrated electro-absorptive modulated laser based on butt-joint configuration for 10Gbit/s application.This paper mainly aims at two aspects.One is to improve the optical coupling between the laser and modulator;another is to increase the bandwidth of such devices by reducing the capacitance parameter of the modulator.The integrated devices exhibit high static and dynamic characteristics. Typical threshold current is 15mA,with some value as low as 8mA.Output power at 100mA is more than 10mW.The extinction characteristics,modulation bandwidth,and electrical return loss are measured.3dB bandwidth more than 10GHz is monitored.
文摘A new S-type of erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with cascaded multilayer medium thin film filter is proposed,this S-type geometry waveguide structure is used to achieve a long path in a compact chip,and obtained higher gain with lower Er-doped concentration. The cascaded multilayer medium thin film filter is utilized to achieve a broader flattening gain bandwidth.The intrinsical gain spectrum is obtained by solving rate and power propagation equations,the effect of transmittance spectrum of thin film filter on flattening gain is discussed.
基金Funding for this study was granted by the King Abdul-Aziz City for Science and Technology(KACST),Kingdom of Saudi Arabia under the Grant Number:12-INF2970-10.
文摘The present study examines the various techniques being used to maintain the integrity of the medical devices,and develops a quantitative framework to list these in the sequence of priority.To achieve the intended objective,the study employs the combined procedure of Fuzzy Analytic Network Process(ANP)and Fuzzy Technical for Order Preference by Similarities to Ideal Solution(TOPSIS).We selected fuzzy based decision making techniques for assessing the integrity of medical devices.The suggested methodology was then used for classifying the suitable techniques used to evaluate the integrity of medical devices.Different techniques or the procedures of integrity assessment were ranked according to their satisfaction weights.The rating of the options determined the order of priority for the procedures.As per the findings of the study,among all the options,A1 was assessed to be the most likely option.This means that the integrity of medical devices of A2 is the highest amongst all the chosen alternatives.This analysis will be a corroborative guideline for manufacturers and developers to quantitatively test the integrity of medical devices in order to engineer efficacious devices.The evaluations undertaken with the assistance of the planned procedure are accurate and conclusive.Hence instead of conducting a manual valuation,this experimental study is a better and reliable option for assessing the integrity of the medical devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11972050 and 12332001)。
文摘A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.
基金financial support by the National Natural Science Foundation of China(No.51873033 and No.52073057)the Fundamental Research Funds for the Central Universities(2232020A-01 and 2232019A3-02)+3 种基金DHU Distinguished Young Professor Program(LZB2019002)Shanghai Rising-Star Program(20QA1400300)the Fundamental Research Funds for the Central University and Graduate Student Innovation Fund of Donghua University(CUSFDH-D-2020033)State Key Laboratory for Space Power Sources Technology(No.YF07050117F0768)。
文摘Converting low-grade waste heat into usable electricity and storing it simultaneously requires a new technology that realize the directional migration of electrons or ions under temperature difference and enrichment on the electrodes.Although the urgent demand of energy conversion-storage(ECS)has emerged in the field of wearable electronic,achieving the integrated bi-functional device remains challenge due to the different mechanisms of electrical transportation and storage.Here,we report an ionic thermoelectric supercapacitor that relies on the synergistic functions of thermoelectricity and supercapacitor in the thermoelectric ionogel electrolyte and high-performance hydrogel electrodes to enhance the ECS performance under a thermal gradient.The thermoelectric electrolyte is composed of polyacrylamide hydrogel and sodium carboxymethyl cellulose(PMSC),possessing cross-linked network with excellent cation selectivity,while the ionic thermoelectric properties are further improved in the presence of NaCl.The corresponding Seebeck coefficient and ionic conductivity of the NaCl–PMSC electrolyte reach 17.1 mV K^(-1)and 26.8 mS cm^(-1),respectively.Owing to good stretchability of both gel-based electrolyte and electrode,the fullstretchable integrated ECS device,termed ionic thermoelectric supercapacitor,presents promising thermal-charge storage capability(~1.3 mC,ΔT≈10 K),thus holds promise for wearable energy harvesting.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675041)the National Science Funds for Creative Research Groups of China(Grant No.61421002)
文摘Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene(2 CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N,C-(2')]iridium(acetylacetonate),(tbt)2 Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The(tbt)2 Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the(tbt)2 Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m^2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 10^11 Jones at a bias of -2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.
基金Beijing Natural Science Foundation(No.JQ19018)National Natural Science Foundations of China(No.U20A20203 and No.61971052)National Special Support Program for High-Level Personnel Recruitment(No.2018RA2131)。
文摘In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.
基金supported by the National Natural Science Foundation of China(No.52271241 and 52071282)the Applied Basic Research Key Project of Yunnan(202001BB050046)the National Training Programs of Innovation and Entrepreneurship for Undergraduates(No.202210673068 and 202210673002).
文摘Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI).
基金Project supported by the National Undergraduate Training Projects for Innovation and Entrepreneurship (Grant No. 5003182007)the National Natural Science Foundation of China (Grant No. 12074137)+1 种基金the National Key Research and Development Project of China (Grant No. 2021YFB2801903)the Natural Science Foundation from the Science,Technology,and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20220530161010023)。
文摘Optical mode converters are essential for enhancing the capacity of optical communication systems. However, fabrication errors restrict the further improvement of conventional mode converters. To address this challenge, we have designed an on-chip TE0–TE1mode converter based on topologically protected waveguide arrays. The simulation results demonstrate that the converter exhibits a mode coupling efficiency of 93.5% near 1550 nm and can tolerate a relative fabrication error of 30%. Our design approach can be extended to enhance the robustness for other integrated photonic devices, beneficial for future development of optical network systems.
基金This study was supported by the Natural Science Foundation of China(No.51072130,51502045,and 21905202)Innovative Research in the University of Tianjin(TD13‐5077)+2 种基金Developed and Applied Funding of Tianjin Normal University(135202XK1702)the Australian Research Council(ARC)through the Discovery Project(No.DP200100365)Discovery Early Career Researcher Award(DECRA,DE170100871)program.
文摘As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage.
基金supported by National Natural Science Foundation of China(Nos.91964203,62274121,and 62104171)Wuhan Science and Technology Major Program(No.2022013702025186)R.C.also acknowledges support from the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Two-dimensional(2D)van derWaals materials have attracted great interest and facilitated the development of post-Moore electronics owing to their novel physical properties and high compatibility with traditional microfabrication techniques.Their wafer-scale synthesis has become a critical challenge for large-scale integrated applications.Although the wafer-scale synthesis approaches for some 2D materials have been extensively explored,the preparation of high-quality thin films with well-controlled thickness remains a big challenge.This review focuses on the wafer-scale synthesis of 2D materials and their applications in integrated electronics.Firstly,several representative 2D layered materials including their crystal structures and unique electronic properties were introduced.Then,the current synthesis strategies of 2Dlayeredmaterials at thewafer scale,which are divided into“top-down”and“bottom-up”,were reviewed in depth.Afterwards,the applications of 2D materials wafer in integrated electrical and optoelectronic devices were discussed.Finally,the current challenges and future prospects for 2D integrated electronics were presented.It is hoped that this reviewwill provide comprehensive and insightful guidance for the development of wafer-scale 2D materials and their integrated applications.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA06A208)
文摘Time delay and integration (TDI) charge coupled device (CCD) noise sets a fundamental limit on image sensor performance, especially under low illumination in remote sensing applications. After introducing the complete sources of CCD noise, we study the effects of TDI operation mode on noise, and the relationship between different types of noise and number of the TDI stage. Then we propose a new technique to identify and measure sources of TDI CCD noise employing mathematical statistics theory, where theoretical analysis shows that noise estimated formulation converges well. Finally, we establish a testing platform to carry out experiments, and a standard TDI CCD is calibrated by using the proposed method. The experimental results show that the noise analysis and measurement methods presented in this paper are useful for modeling TDI CCDs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61605057,61475061,and 61575076)the Science and Technology Development Plan of Jilin Province,China(Grant No.20140519006JH)the Excellent Youth Foundation of Jilin Province,China(Grant No.20170520158JH)
文摘We present an all polymer asymmetric Mach-Zehnder interferometer (AMZI) waveguide sensor based on imprinting bonding and laser polishing method. The fabrication methods are compatible with high accuracy waveguide sensing structure. The rectangle waveguide structure of this sensor has three sensing surfaces contacting the test media, and its sensing accuracy can be increased 5 times compared with that of one surface sensing structure. An AMZI device structure is designed. The single mode condition, the length of the sensing arm, and the length deviation between the sensing arm and the reference arm are optimized. The length deviation is optimized to be 19.8 μm in a refractive index range between 1.470 and 1.545. We fabricate the AMZI waveguide by lithography and wet etching method. The imprinting bonding and laser polishing method is proposed and investigated. The insertion loss is between-80.36 dB and-10.63 dB. The average and linear sensitivity are 768.1 dB/RIU and 548.95 dB/RIU, respectively. And the average and linear detection resolution of the sensor are 1.3010-6 RIU (RIU:refractive index unit) and 1.8210-5 RIU, respectively. This sensor has a fast and cost-effective fabrication process which can be used in the cases of requiring portability and disposability.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61875148)。
文摘An indium tin oxide(ITO) and silicon nitride(Si_(3)N_(4)) assisted compact TE-pass waveguide polarizer based on lithiumniobate-on-insulator is proposed and numerically analyzed.By properly designing the ITO and Si_(3)N_(4) assisted structure and utilizing the epsilon-near-zero effect of ITO,the TM mode is strongly confined in the ITO layer with extremely high loss,while the TE mode is hardly affected and passes through the waveguide with low loss.The simulation results show that the polarizer has an extinction ratio of 22.5 dB and an insertion loss of 0.8 dB at the wavelength of 1.55 μm,and has an operating bandwidth of about 125 nm(from 1540 nm to 1665 nm) for an extinction ratio of>20 dB and an insertion loss of<0.95 dB.Moreover,the proposed device exhibits large fabrication tolerances.More notably,the device is compact,with a length of only 7.5 μm,and is appropriate for on-chip applications.
基金supported in part by the Natural Sciences and Engineering Research Council of Canadathe Fonds de Recherche du Québec-Nature et Technologies,and the Royal Society
文摘We provide an overview of our recent work on developing subwavelength grating (SWG) waveguide devices as an enabling technology for integrated microwave photonics. First, we describe wavelength-selective SWG waveguide filters, including ring resonators, Bragg gratings, and contradirectional couplers. Second, we discuss the development of an index variable optical true time delay line that exploits spatial diversity in an equal-length waveguide array. These SWG waveguide components are fundamental building blocks for realizing more complex structures for advanced microwave photonic signal processing.
基金supported by the 2020 Infrastructure Engineering Technology Innovation Projectthe“Intelligent Substation”Supporting Technology Research Project(031200WS22200001)。
文摘The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61405082)the Fundamental Research Funds for the Central Universities
文摘In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.