The purpose of this study was to examine the effects of supply chain integration on environmental performance of food manufacturing companies in Jordan. Data for this study were collected from one hundred and nineteen...The purpose of this study was to examine the effects of supply chain integration on environmental performance of food manufacturing companies in Jordan. Data for this study were collected from one hundred and nineteen food companies. To answer the study questions, and to verify its hypotheses, descriptive statistical tools and linear regression tests were used. The study results indicated that supply chain integration positively affected environmental performance. Additionally, the results showed that supply chain integration positively affected environmental control and pollution management.展开更多
大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测...大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测试舱温湿度的优化控制。该文提出一种遗传算法(Genetic algorithm,GA)优化PID控制器参数的控制算法—GA-PID。首先通过预估解耦方法对温湿度解耦,然后将目标函数作为控制器的评估值,通过遗传算法的选择、交叉、变异、迭代功能获得PID控制器参数的最优解,以弥补常规PID算法在环境测试舱温湿度控制系统中的不足。通过MATLAB进行了仿真实验,实验结果表明预估解耦可有效地对温湿度进行解耦,提出的GA-PID控制算法可实现快速、准确以及稳定的环境测试舱温湿度控制,具有更好的控制性能。展开更多
文摘The purpose of this study was to examine the effects of supply chain integration on environmental performance of food manufacturing companies in Jordan. Data for this study were collected from one hundred and nineteen food companies. To answer the study questions, and to verify its hypotheses, descriptive statistical tools and linear regression tests were used. The study results indicated that supply chain integration positively affected environmental performance. Additionally, the results showed that supply chain integration positively affected environmental control and pollution management.
文摘大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测试舱温湿度的优化控制。该文提出一种遗传算法(Genetic algorithm,GA)优化PID控制器参数的控制算法—GA-PID。首先通过预估解耦方法对温湿度解耦,然后将目标函数作为控制器的评估值,通过遗传算法的选择、交叉、变异、迭代功能获得PID控制器参数的最优解,以弥补常规PID算法在环境测试舱温湿度控制系统中的不足。通过MATLAB进行了仿真实验,实验结果表明预估解耦可有效地对温湿度进行解耦,提出的GA-PID控制算法可实现快速、准确以及稳定的环境测试舱温湿度控制,具有更好的控制性能。