[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used ...[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.展开更多
Integrated disaster mitigation needs interpreting torrent catchment areas as complex landscape systems. The history of valley-evolution shows the influence of climate and vegetation on the valley-evolution. The energy...Integrated disaster mitigation needs interpreting torrent catchment areas as complex landscape systems. The history of valley-evolution shows the influence of climate and vegetation on the valley-evolution. The energy-concept (energy dissipation concept including the idea of the energy-line) is used for a simple explanation of debris flow. Examples of heavy debris flow disasters in controlled torrents in the Alps and Pyrenees give hints, which expanding the time scale can show that side-effects restrict or counteract the mitigation measures. A pallet of different mitigation measures to avoid or to reduce some of the side-effects is shown. The comprehensive method of disaster mitigation also includes the effect of vegetation. The pallet includes: avoiding hazards (hazard mapping, warning and alarming), appropriate land use and avoiding disaster-enhancing measures in the landscape and technical measures, which take into account their side-effects. The energy line is used as simple design theory. The Jiu-Jitsu Principle is explained too. With this comprehensive method a more sustainable reduction of disasters seems possible.展开更多
A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ...A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.展开更多
This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Lapla...This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Laplace transform we obtain ananalytical solution of the problem In the paper several groups of curves are given.these curves reflect the temporal change law and. spatial distribution of fluid velocity.In addition.we study the effection of power law index on the flow field the resultindicates that when the power law index n < l. the flow velocity is highly sensitive tothe index. and this fact is importanl in related engineering decisions.展开更多
The author studies a family of nonlinear integral flows that involve Riesz potentials on Riemannian manifolds. In the Hardy-Littlewood-Sobolev (HLS for short)subcritical regime, he presents a precise blow-up profile e...The author studies a family of nonlinear integral flows that involve Riesz potentials on Riemannian manifolds. In the Hardy-Littlewood-Sobolev (HLS for short)subcritical regime, he presents a precise blow-up profile exhibited by the flows. In the HLS critical regime, by introducing a dual Q curvature he demonstrates the concentrationcompactness phenomenon. If, in addition, the integral kernel matches with the Green’s function of a conformally invariant elliptic operator, this critical flow can be considered as a dual Yamabe flow. Convergence is then established on the unit spheres, which is also valid on certain locally conformally flat manifolds.展开更多
The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipme...The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipment for an electricity-gas-thermal IES, and an integrated multi-energy flow calculation model of the IES is constructed. A simplified calculation method for the compressor model in a natural gas network, one which is not included in a loop and works in constant compression ratio mode, is also proposed based on the concept of model reduction. In addition, a numerical conversion method for dealing with the conflict between nominal value and per unit value in the multi-energy flow calculation of IES is described. A case study is given to verify the correctness and speed of the proposed method, and the electricity-gas-thermal coupling interaction characteristics among sub-systems are studied.展开更多
An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver ...An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a "semi-inverse" manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.展开更多
基金Supported by National Major Science and Technology Projects(2009ZX07317-006)National Major Science and Technology Projects(2009ZX07317-009)~~
文摘[Objective]The activities of urease and phosphatase in integrated vertical flow constructed wetland and purification effect of black and malodorous river were studied.[Method]Honeycomb stone and soft filler were used as matrix,the biological grid integrated vertical flow constructed wetland system was built to strengthen treatment for black and malodorous river,and the activities of urease and phosphatase of two fillers in different functional areas of constructed wetland were tested to study the film formation property of two fillers in different functional areas.[Result]Both urease and phosphatase activities on biofilm of soft filler were significantly higher than on biofilm of honeycomb stone filler;indicating that choosing soft filler was more advantageous to the growth of biofilm;and urease activity had significant correlation with total nitrogen removal rate,while phosphatase activity had no significant correlation with total phosphorus removal rate.[Conclusion]This study provided evidences for utilizing the activities of urease and phosphatase to evaluate the purification effect of black and malodorous river and choose appropriate filler.
文摘Integrated disaster mitigation needs interpreting torrent catchment areas as complex landscape systems. The history of valley-evolution shows the influence of climate and vegetation on the valley-evolution. The energy-concept (energy dissipation concept including the idea of the energy-line) is used for a simple explanation of debris flow. Examples of heavy debris flow disasters in controlled torrents in the Alps and Pyrenees give hints, which expanding the time scale can show that side-effects restrict or counteract the mitigation measures. A pallet of different mitigation measures to avoid or to reduce some of the side-effects is shown. The comprehensive method of disaster mitigation also includes the effect of vegetation. The pallet includes: avoiding hazards (hazard mapping, warning and alarming), appropriate land use and avoiding disaster-enhancing measures in the landscape and technical measures, which take into account their side-effects. The energy line is used as simple design theory. The Jiu-Jitsu Principle is explained too. With this comprehensive method a more sustainable reduction of disasters seems possible.
文摘A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.
文摘This paper .Studies power law no-Newtonian fluid rotative flow. in an annularpipe. The governing equation is nonlinear one, we linearized the governing equationby assuming that partial factor is at state. With Laplace transform we obtain ananalytical solution of the problem In the paper several groups of curves are given.these curves reflect the temporal change law and. spatial distribution of fluid velocity.In addition.we study the effection of power law index on the flow field the resultindicates that when the power law index n < l. the flow velocity is highly sensitive tothe index. and this fact is importanl in related engineering decisions.
基金supported by the National Natural Science Foundation of China(Nos.12325104,12271028).
文摘The author studies a family of nonlinear integral flows that involve Riesz potentials on Riemannian manifolds. In the Hardy-Littlewood-Sobolev (HLS for short)subcritical regime, he presents a precise blow-up profile exhibited by the flows. In the HLS critical regime, by introducing a dual Q curvature he demonstrates the concentrationcompactness phenomenon. If, in addition, the integral kernel matches with the Green’s function of a conformally invariant elliptic operator, this critical flow can be considered as a dual Yamabe flow. Convergence is then established on the unit spheres, which is also valid on certain locally conformally flat manifolds.
基金supported by National Natural Science Foundation of China(52077193).
文摘The modeling and multi-energy flow calculation of an integrated energy system (IES) are the bases of its operation and planning. This paper establishes the models of various energy sub-systems and the coupling equipment for an electricity-gas-thermal IES, and an integrated multi-energy flow calculation model of the IES is constructed. A simplified calculation method for the compressor model in a natural gas network, one which is not included in a loop and works in constant compression ratio mode, is also proposed based on the concept of model reduction. In addition, a numerical conversion method for dealing with the conflict between nominal value and per unit value in the multi-energy flow calculation of IES is described. A case study is given to verify the correctness and speed of the proposed method, and the electricity-gas-thermal coupling interaction characteristics among sub-systems are studied.
基金co-supported by the National Natural Science Foundation of China (No.51675426)Aerospace Science and Technology Innovation Fund of China (No.2014KC010043)
文摘An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a "semi-inverse" manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.