The equilibrium hydrate formation conditions for CO2/H2 gas mixtures with different CO2 concentrations in 0.29 mol% TBAB aqueous solution are firstly measured.The results illustrate that the equilibrium hydrate format...The equilibrium hydrate formation conditions for CO2/H2 gas mixtures with different CO2 concentrations in 0.29 mol% TBAB aqueous solution are firstly measured.The results illustrate that the equilibrium hydrate formation pressure increases remarkably with the decrease of CO2 concentration in the gas mixture.Based on the phase equilibrium data,a three stages hydrate CO2 separation from integrated gasification combined cycle (IGCC) synthesis gas is investigated.Because the separation efficiency is quite low for the third hydrate separation,a hybrid CO2 separation process of two hydrate stages in conjunction with one chemical absorption process (absorption with MEA) is proposed and studied.The experimental results show H2 concentration in the final residual gas released from the three stages hydrate CO2 separation process was approximately 95.0 mol% while that released from the hybrid CO2 separation process was approximately 99.4 mol%.Thus,the hybrid process is possible to be a promising technology for the industrial application in the future.展开更多
For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed powe...For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed power plant. It is a chemical power generation device thatconverts the energy of a chemical reaction directly into electrical energy and not limited by Carnotcycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive featuresi.e. high efficiency and lower emission of NO_x and SO_x A combined cycle generation system withMCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55 percent.展开更多
Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC...Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC)systems that combine coal gasification and high-temperature fuel cells,such as solid oxide fuel cells or molten carbonate fuel cells(MCFCs),are proving to be promising for efficient and clean power generation,compared with traditional coal-fired power plants.In 2017,with the support of National Key R&D Program of China,a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO_(2) emissions.The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions,designing master system principles for engineering optimization,developing key technologies and intellectual property portfolios,setting up supply chains for key materials and equipment,and operating the first megawatt IGFC demonstration system with near-zero CO_(2) emission,in early 2022.In this paper,the main developments and projections pertaining to the IGFC project are highlighted.展开更多
A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency ...A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency of the combined cycle system has been calculated which is up to 53.9%.展开更多
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ...Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.展开更多
Global concern for depleting fossil fuel reserves have been compelling for evolving power generation options using renewable energy sources. The solar energy happens to be a potential source for running the power plan...Global concern for depleting fossil fuel reserves have been compelling for evolving power generation options using renewable energy sources. The solar energy happens to be a potential source for running the power plants among renewable energy sources. Integrated Solar Combined Cycle(ISCC) power plants have gained popularity among the thermal power plants. Traditional ISCC power plants use Direct Steam Generation(DSG) approach. However, with the DSG method, the ISCC plant’s overall thermal efficiency does not increase significantly due to variations in the availability of solar energy. Thermal Energy Storage(TES) systems when integrated into the solar cycle can address such issues related to energy efficiency, process flexibility, reducing intermittency during non-solar hours. This review work focuses and discusses the developments in various components of the ISCC system including its major cycles and related parameters. The main focus is on CSP technologies, Heat Transfer Fluid(HTF), and Phase Change Material(PCM) used for thermal energy storage. Further, study includes heat enhancement methods with HTF and latent heat storage system. This study will be beneficial to the power plant professionals intending to modify the solar-based Combined Cycle Power Plant(CCPP) and to retrofit the existing Natural Gas Combined Cycle(NGCC) plant with the advanced solar cycle.展开更多
There is a false notion of existing available, abundant, and long lasting fuel energy in the Gulf Cooperation Council (GCC) Countries;with continual income return from its exports. This is not true as the sustainabili...There is a false notion of existing available, abundant, and long lasting fuel energy in the Gulf Cooperation Council (GCC) Countries;with continual income return from its exports. This is not true as the sustainability of this income is questionable. Energy problems started to appear, and can be intensified in coming years due to continuous growth of energy demands and consumptions. The demands already consume all produced Natural Gas (NG) in all GCC, except Qatar;and the NG is the needed fuel for Electric Power (EP) production. These countries have to import NG to run their EP plants. Fuel oil production can be locally consumed within two to three decades if the current rate of consumed energy prevails. The returns from selling the oil and natural gas are the main income to most of the GCC. While NG and oil can be used in EP plants, NG is cheaper, cleaner, and has less negative effects on the environment than fuel oil. Moreover, oil has much better usage than being burned in steam generators of steam power plants or combustion chambers of gas turbines. Introducing renewable energy or nuclear energy may be a necessity for the GCC to keep the flow of their main income from exporting oil. This paper reviews the GCC productions and consumptions of the prime energy (fuel oil and NG) and their role in electric power production. The paper shows that, NG should be the only fossil fuel used to run the power plants in the GCC. It also shows that the all GCC except Qatar, have to import NG. They should diversify the prime energy used in power plants;and consider alternative energy such as nuclear and renewable energy, (solar and wind) energy.展开更多
The development of warm-gas cleanup (WGCU) systems for synthesis gas (syngas) cleanup in in- tegrated gasification combined cycle (IGCC) power plants has the potential to lower the costs of generating power. WGCU incl...The development of warm-gas cleanup (WGCU) systems for synthesis gas (syngas) cleanup in in- tegrated gasification combined cycle (IGCC) power plants has the potential to lower the costs of generating power. WGCU includes the removal of mercury (Hg), present in coal, from the syngas. Carbon-based sorbents used for Hg removal are not suitable for high-temperature Hg removal in conjunction with the WGCU. The US Department of Energy’s National Energy Technology Laboratory’s (DOE/NETL) Office of Research & Development (ORD) has been developing various sorbent alternatives to address the problem of high-temperature Hg removal. This study presents analysis of the capture of Hg from syngas streams as a polishing step to attain US Environmental Protection Agency (EPA) Mercury and Air Toxics Standards (MATS) requirements for Hg (0.003 lb/GWhgross for new IGCC plants) using palladium (Pd) adsorbent being tested by DOE/NETL in association with Johnson Matthey (JM). For the present study, it was assumed that syngas is already cleaned to 5 parts per billion by weight (ppbw) Hg, and the Pd sorbent technology is used as a polishing step to achieve the EPA MATS requirements (0.003 lb/GWhgross, equivalent to 2 ppbw given representative process configuration and material flows). The incremental cost of Hg polishing and the additional capital cost needed were estimated for several scenarios/cases. These cases were differentiated by variance in the following parameters, which are important because they have direct im- pacts on additional capital costs ($/kW), and in turn impacts on the levelized cost of electricity (LCOE): 1) Pd cost (varied from $4,000 to $12,000/lb Pd);2) Gas hourly space velocity (SV) (varied from 500 to 13,500 h-1);3) Pd loading (varied between 2 w/w% Pd and 5 w/w% Pd);4) Sorbent make-up rate (varied between 3%, 1%). The ranges were chosen in order to reasonably reflect, in the cases that are analyzed, the actual fluctuations that have been observed in past *Corresponding author. experience in these important parameters that affect cost (e.g., the Pd cost has kept to within the $4 to 12 k/lb range in recent years). In the case of SV, the high and low points of the range are extremes beyond which costs would either be unreasonable, or increase in cost benefit would be negligible. For a typical case (i.e., using mid-range values of the parameters, including SV of 8000 h-1, 2% Pd loading, 3% make-up rate, $9500/lb Pd cost), the increase in LCOE due to the Pd-polishing system is approximately 0.4% and the additional capital cost is ~$10/kW. As a comparison, the incremental capital cost of conventional Hg removal in an IGCC plant is ~$4 to 8/kW, and the increase in the LCOE is less than 0.4%. Results indicate that in the range of SVs from 3500 h-1 to 10,000 h-1, the Hg-polishing step is expected to function adequately and with increase of LCOE limited to about 1% - 2%. The use of a Pd sorbent-based polishing system to reduce trace Hg levels to the EPA MATS requirements for new IGCC power generation appears to be feasible and reasonably cost-effective.展开更多
A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is casc...A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is cascade utilized according to its temperature and pressure, both sensible and latent heat of the syngas can be recycled into the system, and thereby the net power efficiency can be about 6.4 percentage points higher than that of the traditional GE gasification based power plant(GEPP). The exergy analysis results show that the exergy efficiency of the proposed system reaches 52.45%, which is 13.94% higher than that of the GEPP, and the improvement in exergy efficiency of the proposed system mainly comes from the exergy destruction decline in the syngas energy recovery process, the condensation process and the syngas purification process. The syngas combustion process is the highest exergy destruction process with a value of 157.84 MW in the proposed system. Further performance improvement of the proposed system lies in the utilization process of syngas. Furthermore, system operation parameters have been examined on the coal mass fraction in the supercritical water gasifier(GF), the gasification temperature, and the gasification pressure. The parametric analysis shows that changes in coal concentration in the GF exert more influence on the exergy efficiency of the system compared with the other two parameters.展开更多
基金supported by the National Natural Science Foundation of China (51076155)Science & Technology Program of Guangdong Province(2009B050600006)
文摘The equilibrium hydrate formation conditions for CO2/H2 gas mixtures with different CO2 concentrations in 0.29 mol% TBAB aqueous solution are firstly measured.The results illustrate that the equilibrium hydrate formation pressure increases remarkably with the decrease of CO2 concentration in the gas mixture.Based on the phase equilibrium data,a three stages hydrate CO2 separation from integrated gasification combined cycle (IGCC) synthesis gas is investigated.Because the separation efficiency is quite low for the third hydrate separation,a hybrid CO2 separation process of two hydrate stages in conjunction with one chemical absorption process (absorption with MEA) is proposed and studied.The experimental results show H2 concentration in the final residual gas released from the three stages hydrate CO2 separation process was approximately 95.0 mol% while that released from the hybrid CO2 separation process was approximately 99.4 mol%.Thus,the hybrid process is possible to be a promising technology for the industrial application in the future.
基金This project is supported by National Natural Science Foundation of China (No.50206012).
文摘For environment protection and high efficiency, development of new conceptpower plant has been required in China. The fuel cell is expected to be used in a power plant as acentralized power Station or distributed power plant. It is a chemical power generation device thatconverts the energy of a chemical reaction directly into electrical energy and not limited by Carnotcycle efficiency. The molten carbonate fuel cell (MCFC) power plant has several attractive featuresi.e. high efficiency and lower emission of NO_x and SO_x A combined cycle generation system withMCFC and steam turbine is designed. Its net electrical efficiency LHV is about 55 percent.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601900).
文摘Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC)systems that combine coal gasification and high-temperature fuel cells,such as solid oxide fuel cells or molten carbonate fuel cells(MCFCs),are proving to be promising for efficient and clean power generation,compared with traditional coal-fired power plants.In 2017,with the support of National Key R&D Program of China,a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO_(2) emissions.The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions,designing master system principles for engineering optimization,developing key technologies and intellectual property portfolios,setting up supply chains for key materials and equipment,and operating the first megawatt IGFC demonstration system with near-zero CO_(2) emission,in early 2022.In this paper,the main developments and projections pertaining to the IGFC project are highlighted.
文摘A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency of the combined cycle system has been calculated which is up to 53.9%.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grants 2023JJ40046 and 2023JJ30049.
文摘Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.
文摘Global concern for depleting fossil fuel reserves have been compelling for evolving power generation options using renewable energy sources. The solar energy happens to be a potential source for running the power plants among renewable energy sources. Integrated Solar Combined Cycle(ISCC) power plants have gained popularity among the thermal power plants. Traditional ISCC power plants use Direct Steam Generation(DSG) approach. However, with the DSG method, the ISCC plant’s overall thermal efficiency does not increase significantly due to variations in the availability of solar energy. Thermal Energy Storage(TES) systems when integrated into the solar cycle can address such issues related to energy efficiency, process flexibility, reducing intermittency during non-solar hours. This review work focuses and discusses the developments in various components of the ISCC system including its major cycles and related parameters. The main focus is on CSP technologies, Heat Transfer Fluid(HTF), and Phase Change Material(PCM) used for thermal energy storage. Further, study includes heat enhancement methods with HTF and latent heat storage system. This study will be beneficial to the power plant professionals intending to modify the solar-based Combined Cycle Power Plant(CCPP) and to retrofit the existing Natural Gas Combined Cycle(NGCC) plant with the advanced solar cycle.
文摘There is a false notion of existing available, abundant, and long lasting fuel energy in the Gulf Cooperation Council (GCC) Countries;with continual income return from its exports. This is not true as the sustainability of this income is questionable. Energy problems started to appear, and can be intensified in coming years due to continuous growth of energy demands and consumptions. The demands already consume all produced Natural Gas (NG) in all GCC, except Qatar;and the NG is the needed fuel for Electric Power (EP) production. These countries have to import NG to run their EP plants. Fuel oil production can be locally consumed within two to three decades if the current rate of consumed energy prevails. The returns from selling the oil and natural gas are the main income to most of the GCC. While NG and oil can be used in EP plants, NG is cheaper, cleaner, and has less negative effects on the environment than fuel oil. Moreover, oil has much better usage than being burned in steam generators of steam power plants or combustion chambers of gas turbines. Introducing renewable energy or nuclear energy may be a necessity for the GCC to keep the flow of their main income from exporting oil. This paper reviews the GCC productions and consumptions of the prime energy (fuel oil and NG) and their role in electric power production. The paper shows that, NG should be the only fossil fuel used to run the power plants in the GCC. It also shows that the all GCC except Qatar, have to import NG. They should diversify the prime energy used in power plants;and consider alternative energy such as nuclear and renewable energy, (solar and wind) energy.
文摘The development of warm-gas cleanup (WGCU) systems for synthesis gas (syngas) cleanup in in- tegrated gasification combined cycle (IGCC) power plants has the potential to lower the costs of generating power. WGCU includes the removal of mercury (Hg), present in coal, from the syngas. Carbon-based sorbents used for Hg removal are not suitable for high-temperature Hg removal in conjunction with the WGCU. The US Department of Energy’s National Energy Technology Laboratory’s (DOE/NETL) Office of Research & Development (ORD) has been developing various sorbent alternatives to address the problem of high-temperature Hg removal. This study presents analysis of the capture of Hg from syngas streams as a polishing step to attain US Environmental Protection Agency (EPA) Mercury and Air Toxics Standards (MATS) requirements for Hg (0.003 lb/GWhgross for new IGCC plants) using palladium (Pd) adsorbent being tested by DOE/NETL in association with Johnson Matthey (JM). For the present study, it was assumed that syngas is already cleaned to 5 parts per billion by weight (ppbw) Hg, and the Pd sorbent technology is used as a polishing step to achieve the EPA MATS requirements (0.003 lb/GWhgross, equivalent to 2 ppbw given representative process configuration and material flows). The incremental cost of Hg polishing and the additional capital cost needed were estimated for several scenarios/cases. These cases were differentiated by variance in the following parameters, which are important because they have direct im- pacts on additional capital costs ($/kW), and in turn impacts on the levelized cost of electricity (LCOE): 1) Pd cost (varied from $4,000 to $12,000/lb Pd);2) Gas hourly space velocity (SV) (varied from 500 to 13,500 h-1);3) Pd loading (varied between 2 w/w% Pd and 5 w/w% Pd);4) Sorbent make-up rate (varied between 3%, 1%). The ranges were chosen in order to reasonably reflect, in the cases that are analyzed, the actual fluctuations that have been observed in past *Corresponding author. experience in these important parameters that affect cost (e.g., the Pd cost has kept to within the $4 to 12 k/lb range in recent years). In the case of SV, the high and low points of the range are extremes beyond which costs would either be unreasonable, or increase in cost benefit would be negligible. For a typical case (i.e., using mid-range values of the parameters, including SV of 8000 h-1, 2% Pd loading, 3% make-up rate, $9500/lb Pd cost), the increase in LCOE due to the Pd-polishing system is approximately 0.4% and the additional capital cost is ~$10/kW. As a comparison, the incremental capital cost of conventional Hg removal in an IGCC plant is ~$4 to 8/kW, and the increase in the LCOE is less than 0.4%. Results indicate that in the range of SVs from 3500 h-1 to 10,000 h-1, the Hg-polishing step is expected to function adequately and with increase of LCOE limited to about 1% - 2%. The use of a Pd sorbent-based polishing system to reduce trace Hg levels to the EPA MATS requirements for new IGCC power generation appears to be feasible and reasonably cost-effective.
基金the financial support of the National Key Research and Development Program of China(Grant No.2016YFB0600105)。
文摘A new cleaner power generation system(IPGS) is proposed and investigated in this paper. Integrating combined cycle with supercritical water gasification of coal, the thermodynamic energy of the produced syngas is cascade utilized according to its temperature and pressure, both sensible and latent heat of the syngas can be recycled into the system, and thereby the net power efficiency can be about 6.4 percentage points higher than that of the traditional GE gasification based power plant(GEPP). The exergy analysis results show that the exergy efficiency of the proposed system reaches 52.45%, which is 13.94% higher than that of the GEPP, and the improvement in exergy efficiency of the proposed system mainly comes from the exergy destruction decline in the syngas energy recovery process, the condensation process and the syngas purification process. The syngas combustion process is the highest exergy destruction process with a value of 157.84 MW in the proposed system. Further performance improvement of the proposed system lies in the utilization process of syngas. Furthermore, system operation parameters have been examined on the coal mass fraction in the supercritical water gasifier(GF), the gasification temperature, and the gasification pressure. The parametric analysis shows that changes in coal concentration in the GF exert more influence on the exergy efficiency of the system compared with the other two parameters.