A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC...A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight...A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.展开更多
An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamic...An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.展开更多
针对拦截空中目标的场景,提出一种考虑攻击角度的制导控制一体化(integrated guidance and control,IGC)方法,同时考虑输入饱和以及攻角的约束问题。首先,在俯仰平面下对包含不确定性的系统进行了建模。基于反演法和指令滤波器,处理了...针对拦截空中目标的场景,提出一种考虑攻击角度的制导控制一体化(integrated guidance and control,IGC)方法,同时考虑输入饱和以及攻角的约束问题。首先,在俯仰平面下对包含不确定性的系统进行了建模。基于反演法和指令滤波器,处理了攻击角度约束问题和执行器机械限制的输入饱和问题,设计了含误差积分反馈的补偿项以处理跟踪误差,引入了障碍Lyapunov函数将攻角约束在预设区间。基于Lyapunov理论证明了闭环系统的稳定性和变量的有界性,以及各约束条件的成立性。仿真实验表明,方法能够以预设角度有效拦截目标,过程满足对输入以及攻角的约束条件,同时具备较强的鲁棒性。展开更多
针对故障下高超声速飞行器安全再入飞行问题,考虑控制系统存在各种不确定性参数、干扰和力矩故障,进行高超声速飞行器再入自适应容错制导控制一体化(Integrated guidance and control,IGC)设计。首先,针对分离通道的制导与控制(Separate...针对故障下高超声速飞行器安全再入飞行问题,考虑控制系统存在各种不确定性参数、干扰和力矩故障,进行高超声速飞行器再入自适应容错制导控制一体化(Integrated guidance and control,IGC)设计。首先,针对分离通道的制导与控制(Separate channel integrated guidance and control,SCIGC)模型设计无法同时协调制导和控制系统容错能力的问题,考虑制导环和姿态环之间关系并建立制导控制一体化模型;然后,针对一体化模型设计自适应滑模Backstepping容错控制器,并采用Takagi-Sugeno(T-S)模糊模型在线逼近由未知参数和加性故障引起的复合干扰项;最后,基于Lyapunov稳定性定理设计参数自适应律在线更新容错控制器,同时引入投影算子防止参数漂移以保证参数处于合理区间,从而完成自适应容错制导控制一体化方案设计。在飞行器故障条件下,通过IGC与SCIGC控制策略的仿真对比,验证了自适应容错IGC控制策略的有效性和优越性。展开更多
In presence of input saturation,a novel integrated guidance and control(IGC)law based on the backstepping technique is proposed for missiles attacking manoeuvring target in this paper.A modified saturation function an...In presence of input saturation,a novel integrated guidance and control(IGC)law based on the backstepping technique is proposed for missiles attacking manoeuvring target in this paper.A modified saturation function and an auxiliary system are proposed to deal with the input saturation.The state of the auxiliary system is used in the IGC law design process and stability analysis.Considering the uncertainties caused by target manoeuvres,model errors and variation of the aerodynamic parameters,disturbance observers which converge in finite time are introduced to estimate and compensate them.Based on the Lyapunov theory,the detailed stability analysis of the closedloop system is presented.The non-linear numerical simulations are presented to illustrate the effectiveness of the proposed IGC law.展开更多
针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得...针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得到全状态制导控制一体化模型;然后采用反演方法,结合滑模变结构与神经网络自适应理论设计了编队控制器,并证明了控制系统稳定性;最后在高速情况下进行了六自由度数值仿真,对比了IGC设计方法与分离设计方法的控制性能。仿真结果表明所设计的IGC控制器能够快速精确地对期望编队队形进行构建与保持,并且较分离设计方法具有优越性。展开更多
基金supported by the National Natural Science Foundation of China(6160150571501184)the National Aviation Science Foundation of China(20155196022)
文摘A novel integrated guidance and control (IGC) design method is proposed to solve problems of low control accuracy for a suicide unmanned combat aerial vehicle (UCAV) in the terminal attack stage. First of all, the IGC system model of the UCAV is built based on the three-channel independent design idea, which reduces the difficulties of designing the controller. Then, IGC control laws are designed using the trajectory linearization control (TLC). A nonlinear disturbance observer (NDO) is introduced to the IGC controller to reject various uncertainties, such as the aerodynamic parameter perturbation and the measurement error interference. The stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the proposed IGC design method is verified in a terminal attack mission of the suicide UCAV. Finally, simulation results demonstrate the superiority and effectiveness in the aspects of guidance accuracy and system robustness.
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
基金supported by the National Natural Science Foundation of China(61627810 61790562 61403096)
文摘A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.
基金supported by the National Natural Science Foundation of China(62003264).
文摘An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.
文摘针对拦截空中目标的场景,提出一种考虑攻击角度的制导控制一体化(integrated guidance and control,IGC)方法,同时考虑输入饱和以及攻角的约束问题。首先,在俯仰平面下对包含不确定性的系统进行了建模。基于反演法和指令滤波器,处理了攻击角度约束问题和执行器机械限制的输入饱和问题,设计了含误差积分反馈的补偿项以处理跟踪误差,引入了障碍Lyapunov函数将攻角约束在预设区间。基于Lyapunov理论证明了闭环系统的稳定性和变量的有界性,以及各约束条件的成立性。仿真实验表明,方法能够以预设角度有效拦截目标,过程满足对输入以及攻角的约束条件,同时具备较强的鲁棒性。
文摘针对故障下高超声速飞行器安全再入飞行问题,考虑控制系统存在各种不确定性参数、干扰和力矩故障,进行高超声速飞行器再入自适应容错制导控制一体化(Integrated guidance and control,IGC)设计。首先,针对分离通道的制导与控制(Separate channel integrated guidance and control,SCIGC)模型设计无法同时协调制导和控制系统容错能力的问题,考虑制导环和姿态环之间关系并建立制导控制一体化模型;然后,针对一体化模型设计自适应滑模Backstepping容错控制器,并采用Takagi-Sugeno(T-S)模糊模型在线逼近由未知参数和加性故障引起的复合干扰项;最后,基于Lyapunov稳定性定理设计参数自适应律在线更新容错控制器,同时引入投影算子防止参数漂移以保证参数处于合理区间,从而完成自适应容错制导控制一体化方案设计。在飞行器故障条件下,通过IGC与SCIGC控制策略的仿真对比,验证了自适应容错IGC控制策略的有效性和优越性。
基金the Major Program of National Natural Science Foundation of China[grant number 61690210],[grant number 61690212]the National Natural Science Foundation of China[grant number 61503100].
文摘In presence of input saturation,a novel integrated guidance and control(IGC)law based on the backstepping technique is proposed for missiles attacking manoeuvring target in this paper.A modified saturation function and an auxiliary system are proposed to deal with the input saturation.The state of the auxiliary system is used in the IGC law design process and stability analysis.Considering the uncertainties caused by target manoeuvres,model errors and variation of the aerodynamic parameters,disturbance observers which converge in finite time are introduced to estimate and compensate them.Based on the Lyapunov theory,the detailed stability analysis of the closedloop system is presented.The non-linear numerical simulations are presented to illustrate the effectiveness of the proposed IGC law.
文摘针对主从式结构飞行器协同编队控制问题,以侧滑转弯飞行器为研究对象,采用制导控制一体化(Integrated guidance and control,IGC)方法设计编队控制器。首先在惯性坐标系中定义相对运动坐标系,建立相对运动模型,结合飞行器动力学模型,得到全状态制导控制一体化模型;然后采用反演方法,结合滑模变结构与神经网络自适应理论设计了编队控制器,并证明了控制系统稳定性;最后在高速情况下进行了六自由度数值仿真,对比了IGC设计方法与分离设计方法的控制性能。仿真结果表明所设计的IGC控制器能够快速精确地对期望编队队形进行构建与保持,并且较分离设计方法具有优越性。