The Shuangjianzishan deposit in Inner Mongolia is a typical Ag-Pb-Zn deposit of the southern Great Xing’an Range.Proven reserves of Ag,Pb,and Zn in this deposit have reached the scale of super-large deposits,with fav...The Shuangjianzishan deposit in Inner Mongolia is a typical Ag-Pb-Zn deposit of the southern Great Xing’an Range.Proven reserves of Ag,Pb,and Zn in this deposit have reached the scale of super-large deposits,with favorable metallogenic conditions,strong prospecting signs,and high metallogenic potential.This paper reports a study involving integrated geophysical methods,including controlled-source audio-frequency magnetotelluric,gravity,magnetic,and shallow-seismic-reflection methods,to determine the spatial distribution of ore-controlling structures and subsurface intrusive rock for a depth range of<2000 m in the Shuangjianzishan ore district.The objective of this study is to construct a metallogenic model of the ore district and provide a scientific basis for the exploration of similar deposits in the deep and surrounding regions.We used three-dimensional inversion for controlled-source audio-frequency magnetotelluric data based on the limited memory quasi-Newton algorithm,and three-dimensional physical-property inversion for the gravity and magnetic data to obtain information about the subsurface distribution of ore-controlling structures and intrusive rocks.Under seismic reflection results,regional geology,petrophysical properties,and borehole information,the geophysical investigation shows that the Dashizhai group,which contains the main ore-bearing strata in the ore district,is distributed within a depth range of<1239 m,and is thick in the Xinglongshan ore block and the eastern part of the Shuangjianzishan ore block.The mineralization is spatially associated with a fault system characterized by NE-,NW-,and N-trending faults.The magnetic and electrical models identify large,deep bodies of intrusive rock that are inferred to have been involved in mineralization,with local shallow emplacement of some intrusions.Combining the subsurface spatial distributions of ore-bearing strata,ore-controlling faults,and intrusive rock,we propose two different metallogenic models for the Shuangjianzishan ore district,which provide a scientific basis for further prospecting in the deep regions of the ore district and surrounding areas.展开更多
On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao b...On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao buried fault since the Quaternary and the age of its latest activity phase and determined that the upper break point by the fault dislocation reaches 20 m below the surface. The latest activity phase was in the early Holocene and the fault is a shallow-buried active fault. An average dislocation rate along the fault is 0.12 nun/a since the Quaternary. Thus, it is a buried active fault with intermediate to strong movement strength in the eastern China.展开更多
基金financial support from the National Key R&D Program of China(2017YFC0601305)the China Geological Survey(DD20160125,DD20160207,DD20190010)the National Natural Science Foundation of China(41504076)。
文摘The Shuangjianzishan deposit in Inner Mongolia is a typical Ag-Pb-Zn deposit of the southern Great Xing’an Range.Proven reserves of Ag,Pb,and Zn in this deposit have reached the scale of super-large deposits,with favorable metallogenic conditions,strong prospecting signs,and high metallogenic potential.This paper reports a study involving integrated geophysical methods,including controlled-source audio-frequency magnetotelluric,gravity,magnetic,and shallow-seismic-reflection methods,to determine the spatial distribution of ore-controlling structures and subsurface intrusive rock for a depth range of<2000 m in the Shuangjianzishan ore district.The objective of this study is to construct a metallogenic model of the ore district and provide a scientific basis for the exploration of similar deposits in the deep and surrounding regions.We used three-dimensional inversion for controlled-source audio-frequency magnetotelluric data based on the limited memory quasi-Newton algorithm,and three-dimensional physical-property inversion for the gravity and magnetic data to obtain information about the subsurface distribution of ore-controlling structures and intrusive rocks.Under seismic reflection results,regional geology,petrophysical properties,and borehole information,the geophysical investigation shows that the Dashizhai group,which contains the main ore-bearing strata in the ore district,is distributed within a depth range of<1239 m,and is thick in the Xinglongshan ore block and the eastern part of the Shuangjianzishan ore block.The mineralization is spatially associated with a fault system characterized by NE-,NW-,and N-trending faults.The magnetic and electrical models identify large,deep bodies of intrusive rock that are inferred to have been involved in mineralization,with local shallow emplacement of some intrusions.Combining the subsurface spatial distributions of ore-bearing strata,ore-controlling faults,and intrusive rock,we propose two different metallogenic models for the Shuangjianzishan ore district,which provide a scientific basis for further prospecting in the deep regions of the ore district and surrounding areas.
文摘On the basis of locating by the geochemical prospecting, shallow seismic sounding, drilling, geological profiling, and neogeochronological dating, we first found out the dislocation amount along the Liaocheng-Lankao buried fault since the Quaternary and the age of its latest activity phase and determined that the upper break point by the fault dislocation reaches 20 m below the surface. The latest activity phase was in the early Holocene and the fault is a shallow-buried active fault. An average dislocation rate along the fault is 0.12 nun/a since the Quaternary. Thus, it is a buried active fault with intermediate to strong movement strength in the eastern China.