In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosin...In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integr...A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.展开更多
Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transf...Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.展开更多
The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian sta...The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.展开更多
The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals ...The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals and Cauchy principal value integrals is established.展开更多
When kernel density is in the class of continuous function to possessing sufficient derivative of high order(and needn't in the class of corresponding Holder function),in this paper it is given the continuity and...When kernel density is in the class of continuous function to possessing sufficient derivative of high order(and needn't in the class of corresponding Holder function),in this paper it is given the continuity and the differential formulas for singular integrals of high non--integral order. The above results themselves and in order to prove in future the formulas to changing order of integration for singular integrals of high non-integral order(another paper) will have important significance. The method to prove in this paper is more different from the method in the corresponding cass of singular integrals of high integral order.展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,whic...In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,which integrates order delivery by depicting order location dispersion in an online order picking strategy.Order delivery,including delivery person assignment and route planning,is modeled to minimize the total duration of order fulfillment by considering the influence of the order picking completion time.A rule-based online order picking strategy is established,and a customized ant colony optimization(ACO)algorithm is proposed to optimize order delivery.Experiments on 16 simulated instances of different scales demonstrate that our online order picking schedule considering order delivery outperforms existing approaches and that the customized ACO algorithm for order delivery is effective.展开更多
Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be...Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds...Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.展开更多
It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation t...It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is...We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator...By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator, the squeezing operator, and the fractional Fourier transformation operator, which in turn sheds light on the matrix optics design of ABCD-systems The new decomposition for the two-mode Fresnel operator is also obtained by the use of entangled state representation.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
基金This project is supported by the Natural Science Foundation of China and Science Development Foundation of the Colleges and University of Shanghai.
文摘In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
基金supported by the Natural Science Foundation of Fujian Province of China(S0850029,2008J0206)Innovation Foundation of Xiamen University(XDKJCX20063019),the National Science Foundation of China (10771174)
文摘A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Using the Weyl ordering of operators expansion formula (Hong-Yi Fan, J. Phys.A 25 (1992) 3443) this paper finds a kind of two-fold integration transformation about the Wigner operator △( q',p) q-number transform) in phase space quantum mechanics,∫∫∞-∞dp'dq'/π △(q',p')e-2i( p-p')( q-q')=δ( p-P)δ( q-Q),∫∫∞-∞dqdpδ(p-P)δ(q-Q)e2i(p-p')(q-q')=△(q',p'),whereQ,P are the coordinate and momentum operators, respectively. We apply it to study mutual converting formulae among Q-P ordering, P-Q ordering and Weyl ordering of operators. In this way, the contents of phase space quantum mechanics can be enriched. The formula of the Weyl ordering of operators expansion and the technique of integration within the Weyl ordered product of operators are used in this discussion.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.
文摘The Peano derivatives are introduced for functions along an arc in the complex plane. Singular integrals of arbitrary order with singularities at its end-points are defined so that a unified theory for such integrals and Cauchy principal value integrals is established.
文摘When kernel density is in the class of continuous function to possessing sufficient derivative of high order(and needn't in the class of corresponding Holder function),in this paper it is given the continuity and the differential formulas for singular integrals of high non--integral order. The above results themselves and in order to prove in future the formulas to changing order of integration for singular integrals of high non-integral order(another paper) will have important significance. The method to prove in this paper is more different from the method in the corresponding cass of singular integrals of high integral order.
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
文摘Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.
基金supported by the National Natural Science Foundation of China(72032001,71972071)the Ministry of Education,Humanities and Social Sciences Research Planning Foundation(21YJA630057).
文摘In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,which integrates order delivery by depicting order location dispersion in an online order picking strategy.Order delivery,including delivery person assignment and route planning,is modeled to minimize the total duration of order fulfillment by considering the influence of the order picking completion time.A rule-based online order picking strategy is established,and a customized ant colony optimization(ACO)algorithm is proposed to optimize order delivery.Experiments on 16 simulated instances of different scales demonstrate that our online order picking schedule considering order delivery outperforms existing approaches and that the customized ACO algorithm for order delivery is effective.
文摘Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金the Bilateral Science and Technology Collaboration Program of Australia 1998 the Natural Science Foundation of China (No. 1
文摘Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
基金supported by the Natural Science Foundation of Jiangxi Province,China (Grant No 2007GZW0171)the Foundation of Education Department of Jiangxi Province,China (Grant No [2007] 136)
文摘We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.
基金supported by the University Natural Science Foundation of Anhui Province,China (Grant No. KJ2011Z339)the National Natural Science Foundation of China (Grant No. 10874174)
文摘By virtue of the coherent state representation of the newly introduced Fresnel operator and its group product property we obtain new decomposition of the Fresnel operator as the product of the quadratic phase operator, the squeezing operator, and the fractional Fourier transformation operator, which in turn sheds light on the matrix optics design of ABCD-systems The new decomposition for the two-mode Fresnel operator is also obtained by the use of entangled state representation.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.