The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of ...The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of soil in artificial forests,the spatial distribution of major soil fertility indicators was analyzed,and the distribution map of the fertility index of artificial forests in the entire region and the comprehensive fertility index of artificial forests of different soil types were obtained.Canonical correspondence analysis method was used to analyze soil fertility indicators and environmental factors,and the environmental driving factors of soil fertility indicators for artificial forests of the main soil types in Guangxi were obtained.The results showed that over 90%of the soil fertility index of artificial forests in the entire region was between 0.20 and 0.50.The order of soil fertility index of different soil types of artificial forests from high to low was yellow brown soil>yellow red soil>yellow soil>red soil>limestone soil>latosolic red soil>laterite.In artificial forests of latosolic red soil,the correlation between soil alkaline nitrogen and organic matter,annual average temperature was high,while the correlation between soil available phosphorus and organic matter,pH was high,and the correlation between soil available potassium and environmental factors such as slope,altitude,rainfall,accumulated temperature,and slope aspect was high.In artificial forests of red soil,the correlation between soil alkaline nitrogen and slope,altitude was high,while the correlation between soil available phosphorus and accumulated temperature,rainfall was high,and the correlation between soil available potassium and pH was high.In artificial forests of limestone soil,there was a high correlation between soil alkaline nitrogen and slope,organic matter,a high correlation between soil available phosphorus and accumulated temperature,rainfall,and a high correlation between soil available potassium and pH.展开更多
Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency...Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility.展开更多
Possibility of wood biomass for preparing organic soil was examined to construct reproducible and stable organic standard soil. Seven organic soils were constructed from base soils and additive materials based on the ...Possibility of wood biomass for preparing organic soil was examined to construct reproducible and stable organic standard soil. Seven organic soils were constructed from base soils and additive materials based on the recommended values of the soil fertility index (SOFIX) (total carbon ≥ 25,000 mg/kg, total nitrogen ≥ 1500 mg/kg, total phosphorus ≥ 1100, and total potassium of 2500 to 10,000 mg/kg). Base soils were prepared from two types of wood biomass (big- and small-sized wood chips) at 50%, 60%, and 70% (v/v) and other organic materials such as peat moss, black soil, and mountain soil. Additive materials (soybean meal, oil cake, cow manure, and bone meal) were amended into all organic soils at the same amount. Incubation experiment showed that bacterial biomass in all organic soil was greater than 6 × 108 cells/g-soil after addition of 30% of water content for 1 week. In addition, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis resulted in a stable bacterial diversity of the organic soil prepared from the small size wood chip at 70%. Chemical properties of all organic soils were within the recommended values of SOFIX. The plant cultivation experiment showed that fresh Brassica rapa var. peruviridis weights in the organic soils with 50%, 60%, and 70% of small-sized wood chip were 5%, 16%, and 27% higher than that of the chemical fertilizer-amended soil. The organic soil with 70% of small wood chip was the best in the seven organic soils in this study.展开更多
Many views, paradigms and concepts have been advocated in recent decades on soil fertility and soil conservation across the globe in order to provide sustainable solutions to the rising food and nutrition insecurity w...Many views, paradigms and concepts have been advocated in recent decades on soil fertility and soil conservation across the globe in order to provide sustainable solutions to the rising food and nutrition insecurity while preserving the natural resource base. Meanwhile, food and nutrition security in Sub-Saharan Africa (SSA) is mainly achieved through smallholder farming systems that are characterized by poor and declining soil fertility, which often leads to low crop yields and low income. Hence, a field trial was established to evaluate the impact of integrated soil fertility management (ISFM) practices on tomato yield and the farm-scale income in smallholder farming systems. The ISFM trial comprised a control with no input, mineral fertilizer, and organic treatments comprising sole Mucuna and Tithonia biomasses as well as their combination (Mucuna + Tithonia). Generally, tomato performance was better with organic plant biomass amendments, with significantly higher (P Mucuna + Tithonia and sole Tithonia, followed by sole Mucuna and mineral fertilizer compared to the control. Meanwhile in comparison to the control, Mucuna + Tithonia and sole Tithonia recorded 3.5 and 3.4 t ha-1 more yield, respectively, which was about twice the additional yield for sole Mucuna and mineral fertilizer with 1.8 and 1.5 t ha-1, respectively (Tukey’s HSD, P Mucuna + Tithonia and sole Tithonia, followed by sole Mucuna and mineral fertilizer, as compared to the control (Tukey’s HSD, P P P Mucuna + Tithonia biomass materials or their sole applications as basal mulch to improve tomato production. Thus, these organic amendments could be an alternative and sustainable integrated soil fertility management strategy to boost tomato production and farm-scale income without jeopardizing the sustainability of the environment. However, this requires more efforts to adapt the different ISFM techniques to the specific needs of smallholder farmers, coupled with effective dissemination strategies that facilitate knowledge transfer and technology adoption.展开更多
Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> an...Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> analyzed using the soil fertility index. From these samples, an orchard field database was constructed and the soil properties between orchard, upland, and paddy fields </span><span style="font-family:Verdana;">were </span><span style="font-family:""><span style="font-family:Verdana;">compared. The average value of bacterial biomass in the orchard fields was 7.4 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil, ranging from not detected (lower than 6.6 × 10</span><sup><span style="font-family:Verdana;">6</span></sup><span style="font-family:Verdana;"> cells/g-soil) to 7.7 × 10</span><sup><span style="font-family:Verdana;">9</span></sup><span style="font-family:Verdana;"> cells/g-soil. The average values of total carbon (TC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK), were 24,000 mg/kg (2670 to 128,100 mg/kg), 1460 mg/kg (133 to 6400 mg/kg), 1030 mg/kg (142 to 5362 mg/kg), and 5370 mg/kg (1214 to 18,155 mg/kg), respectively. The C/N and C/P ratios were 19 (3 to 85) and 27 (2 to 101), respectively. Soil properties of the orchard fields were compared with those of the upland and the paddy fields. The average value of bacterial biomass in the orchard fields was almost the same as that in the upland fields (8.0 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil), but the number was lower than that in the paddy fields (12.9 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil). The average values of TC and TN in the orchard fields fell between those in the upland fields (TC: 33,120 mg/kg, TN: 2010 mg/kg) and the paddy fields (TC: 15,420 mg/kg, TN: 1080</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">mg/kg). The relationship between the bacterial biomass and TC in the orchard fields resembled that in the upland fields. A suitable soil condition for the orchard fields was determined as TC: ≥25,000 mg/kg, TN: ≥1500 mg/kg, TP: ≥900 mg/kg and TK: 2500 - 10,000 mg/kg.</span><span style="font-family:""> </span><span style="font-family:Verdana;">These recommended values will be effective for the improvement of the soil quality in the orchard fields by enhancing the number and activities of microorganisms.展开更多
Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrate...Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI), were employed using two indicator selection methods: Total Data Set (TDS) and Minimum Data Set (MDS), focusing on agricultural fields in Golestan province, Iran. A total of 89 soil samples were collected and analyzed for particle size distribution, organic carbon, calcium carbonate equivalent (CCE), electrical conductivity (EC), pH, and plant-essential nutrients, including nitrogen, phosphorus, potassium, zinc, copper, manganese, and iron. Principal component analysis (PCA) was used to extract MDS from TDS, and geostatistical adaptation and correlation analyses were performed to determine the optimal soil quality evaluation index. Our results show that the exponential model better suits the spatial structure of soil quality indicators (IQIMDS: 0.955). Conformity and correlation analyses indicate that the IQI index outperformed the NQI index in estimating soil quality. The superiority of the TDS technique over the MDS technique in terms of accuracy (IQITDSs kappa: 0.155). Linear relationships between different methods showed a higher correlation coefficient (R2 = 0.43) through the application of IQI. This study suggests the use of IQIMDS to provide a reliable measurement that is particularly useful in assessing the quality of agricultural soil.展开更多
Soil organic carbon (SOC), soil microbial biomass carbon (SMBC) and SMBC quotient (SMBC/SOC, qSMBC) are key indexes of soil biological fertility because of the relationship to soil nutrition supply capacity. Yet...Soil organic carbon (SOC), soil microbial biomass carbon (SMBC) and SMBC quotient (SMBC/SOC, qSMBC) are key indexes of soil biological fertility because of the relationship to soil nutrition supply capacity. Yet it remains unknown how these three indexes change, which limits our understanding about how soil respond to different fertilization practices. Based on a 22-yr (1990-2011) long-term fertilization experiment in northwest China, we investigated the dynamics of SMBC and qSMBC during the growing period of winter wheat, the relationships between the SMBC, qSMBC, soil organic carbon (SOC) concentrations, the carbon input and grain yield of wheat as well. Fertilization treatments were 1) nonfertilization (control); 2) chemical nitrogen plus phosphate plus potassium (NPK); 3) NPK plus animal manure (NPKM); 4) double NPKM (hNPKM) and 5) NPK plus straw (NPKS). Results showed that the SMBC and qSMBC were significantly different among returning, jointing, flowering and harvest stages of wheat under long-term fertilization. And the largest values were observed in the flowering stage. Values for SMBC and qSMBC ranged from 37.5 to 106.0 mg kg1 and 0.41 to 0.61%, respectively. The mean value rank of SMBC during the whole growing period of wheat was hNPKM〉NPK_M〉NPKS〉CK〉NPK. But there were no statistically significant differences between hNPKM and NPKM, or between CK and NPK. The order for qSMBC was NPKS〉NPKM〉CK〉hNPKM〉NPK. These results indicated that NPKS significantly increased the ratio of SMBC to SOC, i.e., qSMBC, compared with NPK fertilizer or other two NPKM fertilizations. Significant linear relationships were observed between the annual carbon input and SOC (P〈0.01) or SMBC (P〈0.05), and between the relative grain yield of wheat and the SOC content as well (P〈0.05). But the qSMBC was not correlated with the annual carbon input. It is thus obvious that the combination of manure, straw with mineral fertilizer may be benefit to increase SOC and improve soil quality than using only mineral fertilizer.展开更多
Tissue culture (TC) banana plantlets at the in vitro stage are delicate and devoid of microbes and nutrients that are essential for establishment and subsequent growth. Some microbes are known for function best under ...Tissue culture (TC) banana plantlets at the in vitro stage are delicate and devoid of microbes and nutrients that are essential for establishment and subsequent growth. Some microbes are known for function best under certain soil threshold levels of macro and micronutrients and have been associated with growth and performance of TC banana. A green house and field study was conducted to evaluate the effect of combining two commercial biological products [Rhizatech and ECO-T (mycorrhiza and Trichoderma based products, respectively)] with various sources of nitrogen and phosphorous including Mavuno, Minjingu phosphate rock, Calcium Ammonium Nitrate (CAN), manure and diammonium phosphate (DAP) on growth and performance of TC banana in Vertisol and Rhodic Ferralsol soil conditions. Tissue culture plants were initially inoculated with Rhizatech and ECO-T at the acclimatization stage and subsequently at the beginning of the potting stage and field establishment. Addition of nutrient sources was also done at the same stages of plant growth by mixing with the soil substrates prior to planting. The performance of plants was significantly (at p ≤ 0.05) affected by the combinations of nutrient sources depending on the soil type and stage of plant development. The growth of plants in the Vertisol increased with Trichoderma combined with either organic manure, DAP or combined with a macro and micro nutrient source (Mavuno) as compared to the sole application of Trichoderma. Performance of plants treated with combination of mycorrhiza and either Mavuno and minjigu rock phosphate was consistently higher in the Rhodic Ferralsol than either mycorrhiza alone or fertilizer alone. This indicates that TC plants could highly benefit from combined application of microbiological products and inorganic and organic fertilizers. However, a prior knowledge of the product’s microbial formulation and prevailing soil conditions is essential for optimizing the potential benefits of integrating microbe-based product with inorganic and organic fertilizers.展开更多
Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for...Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for the maintenance and improvement of soil fertility than other crop-planting has been highly concerned. In this study, 16 soil fertility indicators and soil integrated index (<em>IFI</em>) were compared by 21 pairs of fields in Chenzhou city under the rotations of tobacco-rice (TF) and rice-rice (RR), and results showed that, comparing the mean values of soil fertility indicators, the contents of OM, TN, AN, AK, S and <em>IFI</em> were extremely significantly higher in TR than those in RR (p < 0.01), the contents of Cu, Ca, Mg and Fe were significantly higher in TR than those in RR (p < 0.05), but Mn content was significantly lower in TR than those in RR (p < 0.05). Meanwhile the contents of TP, TK and AP were insignificantly higher in TR than those in RR, and the contents of B, Mo and Zn were insignificantly lower in TR than those in RR. The above significant differences in soil fertility indicators were mainly due to relatively higher fertilizer inputs and less nutrient removal during tobacco-growing season than during rape-growing season, the net increase of N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O are 8.61, 5.25 and 24.89 kg per 667 m<sup>2</sup> respectively in tobacco-growing season, while the net decrease of N, P<sub>2</sub>O<sub>5 </sub>and K<sub>2</sub>O are 8.88, 4.70 and 4.62 kg per 667 m<sup>2</sup> respectively in rape-growing season. C.V. of soil fertility indicators and <em>IFI</em> were meanly lower in TR (52.25% and 15.95%, respectively) than those in RR (63.07% and 22.12%, respectively). Comparatively, tobacco-planting can improve soil fertility better than rape-planting when rotated with late rice in Chenzhou city. For tobacco-planting, Mg fertilizer should be applied for 23.8% TR fields, while more N, K, Ca, Mg, S and B fertilizers should be applied for 42.86%, 23.81%, 14.29%, 47.62%, 80.95% and 47.62% RR fields, respectively.展开更多
Urban and peri-urban agriculture plays a key role by providing many goods and services. In particular, it provides diversified food and employment for vulnerable groups (youth and women). However, it often involves ne...Urban and peri-urban agriculture plays a key role by providing many goods and services. In particular, it provides diversified food and employment for vulnerable groups (youth and women). However, it often involves negative externalities due to non-conventional soils fertility management practices. This study aimed to investigate the chemical quality of soils over six (06) sites of the market gardening area of Bobo-Dioulasso (Burkina Faso) as affected by fertilizers uses and sites location. Thirty (30) representative market gardening farms, located in urban, semi-urban and rural areas, were randomly selected from a baseline survey database. Within each farm, composite soil samples made up of 3 individual cores were taken over the 0 - 15 cm soil depth for determining soils carbon, total nitrogen, available phosphorus contents and pH-water. These data were normalized and summarized to compute a synthetic Soil Fertility Index (SFI). The data processing was focused on a Principal Component Analysis and an Ascendant Hierarchical Classification in order to make a typology of the vegetable farms. Fertilizers management effects on soils quality were compared through Variance Analysis (ANOVA) following a GLM procedure in Rstudio software. As main results, soils chemical parameters, except for available K, were affected by the location of the sites. Soils in urban farms are less acidic (on average pH = 6.9), while semi-urban and rural sites (Samadeni, Nakaguana) have more acidic soils. However, the latter site had the highest values of C and N. Moreover, the long-term application of organic matter sources results in improving of the chemical quality of the market garden soil. The SFI is positively correlated with the rate of applied organic fertilizers, and the cultivation duration. On the other hand, soil quality tends to decrease with the expansion of the area, due to a dilution effect of the organic fertilizer doses. All these results suggest that there is a real scope to reinforce the position of the market garden as an opportunity for recycling organic wastes and sequestration of carbon by promoting relevant fertilization packages that strongly rely on organic matters sources (Compost, Biochar, etc.).展开更多
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the...The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.展开更多
文摘The aim was to clarify the environmental driving factors of soil fertility indicators in artificial forests of Guangxi and comprehensively evaluate the soil fertility level.By collecting data on the current status of soil in artificial forests,the spatial distribution of major soil fertility indicators was analyzed,and the distribution map of the fertility index of artificial forests in the entire region and the comprehensive fertility index of artificial forests of different soil types were obtained.Canonical correspondence analysis method was used to analyze soil fertility indicators and environmental factors,and the environmental driving factors of soil fertility indicators for artificial forests of the main soil types in Guangxi were obtained.The results showed that over 90%of the soil fertility index of artificial forests in the entire region was between 0.20 and 0.50.The order of soil fertility index of different soil types of artificial forests from high to low was yellow brown soil>yellow red soil>yellow soil>red soil>limestone soil>latosolic red soil>laterite.In artificial forests of latosolic red soil,the correlation between soil alkaline nitrogen and organic matter,annual average temperature was high,while the correlation between soil available phosphorus and organic matter,pH was high,and the correlation between soil available potassium and environmental factors such as slope,altitude,rainfall,accumulated temperature,and slope aspect was high.In artificial forests of red soil,the correlation between soil alkaline nitrogen and slope,altitude was high,while the correlation between soil available phosphorus and accumulated temperature,rainfall was high,and the correlation between soil available potassium and pH was high.In artificial forests of limestone soil,there was a high correlation between soil alkaline nitrogen and slope,organic matter,a high correlation between soil available phosphorus and accumulated temperature,rainfall,and a high correlation between soil available potassium and pH.
基金supported by the Key National Research and Development Program of China (2016YFD0300207, 2016YFD0300103)the China Agriculture Research System (CRRS-02)
文摘Crop yield potential can be increased through the use of appropriate agronomic practices. Integrated agronomic practice (IAP) is an effective way to increase maize (Zea mays L.) grain yield and nitrogen use efficiency (NUE);however, the physiological processes associated with gains in yield potential obtained from IAP, particularly the different under various soil fertility conditions, remain poorly understood. An IAP strategy including optimal planting density, split fertilizer application, and subsoiling tillage was evaluated over two growing seasons to determine whether the effects of IAP on maize yield and NUE differ under different levels of soil fertility. Compared to farmers' practices (FP), IAP increased maize grain yield in 2013 and 2014 by 25% and 28%, respectively, in low soil fertility (LSF) fields and by 36% and 37%, respectively, in high soil fertility (HSF) fields. The large yield gap was attributed mainly to greater dry matter (DM) and N accumulation with IAP than with FP owing to increased leaf area index (LAI) and DM accumulation rate, which were promoted by greater soil mineral N content (Nmin) and root length. Post-silking DM and N accumulation were also greater with IAP than with FP under HSF conditions, accounting for 60% and 43%, respectively, of total biomass and N accumulation;however, no significant differences were found for post-silking DM and N accumulation between IAP and FP under LSF conditions. Thus, the increase in grain yield with IAP was greater under HSF than under LSF. Because of greater grain yield and N uptake, IAP significantly increased N partial factor productivity, agronomic N efficiency, N recovery efficiency, and physiological efficiency of applied N compared to FP, particularly in the HSF fields. These results indicate that considerable further increases in yield and NUE can be obtained by increasing effective soil N content and maize root length to promote post-silking N and DM accumulation in maize planted at high plant density, especially in fields with low soil fertility.
文摘Possibility of wood biomass for preparing organic soil was examined to construct reproducible and stable organic standard soil. Seven organic soils were constructed from base soils and additive materials based on the recommended values of the soil fertility index (SOFIX) (total carbon ≥ 25,000 mg/kg, total nitrogen ≥ 1500 mg/kg, total phosphorus ≥ 1100, and total potassium of 2500 to 10,000 mg/kg). Base soils were prepared from two types of wood biomass (big- and small-sized wood chips) at 50%, 60%, and 70% (v/v) and other organic materials such as peat moss, black soil, and mountain soil. Additive materials (soybean meal, oil cake, cow manure, and bone meal) were amended into all organic soils at the same amount. Incubation experiment showed that bacterial biomass in all organic soil was greater than 6 × 108 cells/g-soil after addition of 30% of water content for 1 week. In addition, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis resulted in a stable bacterial diversity of the organic soil prepared from the small size wood chip at 70%. Chemical properties of all organic soils were within the recommended values of SOFIX. The plant cultivation experiment showed that fresh Brassica rapa var. peruviridis weights in the organic soils with 50%, 60%, and 70% of small-sized wood chip were 5%, 16%, and 27% higher than that of the chemical fertilizer-amended soil. The organic soil with 70% of small wood chip was the best in the seven organic soils in this study.
文摘Many views, paradigms and concepts have been advocated in recent decades on soil fertility and soil conservation across the globe in order to provide sustainable solutions to the rising food and nutrition insecurity while preserving the natural resource base. Meanwhile, food and nutrition security in Sub-Saharan Africa (SSA) is mainly achieved through smallholder farming systems that are characterized by poor and declining soil fertility, which often leads to low crop yields and low income. Hence, a field trial was established to evaluate the impact of integrated soil fertility management (ISFM) practices on tomato yield and the farm-scale income in smallholder farming systems. The ISFM trial comprised a control with no input, mineral fertilizer, and organic treatments comprising sole Mucuna and Tithonia biomasses as well as their combination (Mucuna + Tithonia). Generally, tomato performance was better with organic plant biomass amendments, with significantly higher (P Mucuna + Tithonia and sole Tithonia, followed by sole Mucuna and mineral fertilizer compared to the control. Meanwhile in comparison to the control, Mucuna + Tithonia and sole Tithonia recorded 3.5 and 3.4 t ha-1 more yield, respectively, which was about twice the additional yield for sole Mucuna and mineral fertilizer with 1.8 and 1.5 t ha-1, respectively (Tukey’s HSD, P Mucuna + Tithonia and sole Tithonia, followed by sole Mucuna and mineral fertilizer, as compared to the control (Tukey’s HSD, P P P Mucuna + Tithonia biomass materials or their sole applications as basal mulch to improve tomato production. Thus, these organic amendments could be an alternative and sustainable integrated soil fertility management strategy to boost tomato production and farm-scale income without jeopardizing the sustainability of the environment. However, this requires more efforts to adapt the different ISFM techniques to the specific needs of smallholder farmers, coupled with effective dissemination strategies that facilitate knowledge transfer and technology adoption.
文摘Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> analyzed using the soil fertility index. From these samples, an orchard field database was constructed and the soil properties between orchard, upland, and paddy fields </span><span style="font-family:Verdana;">were </span><span style="font-family:""><span style="font-family:Verdana;">compared. The average value of bacterial biomass in the orchard fields was 7.4 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil, ranging from not detected (lower than 6.6 × 10</span><sup><span style="font-family:Verdana;">6</span></sup><span style="font-family:Verdana;"> cells/g-soil) to 7.7 × 10</span><sup><span style="font-family:Verdana;">9</span></sup><span style="font-family:Verdana;"> cells/g-soil. The average values of total carbon (TC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK), were 24,000 mg/kg (2670 to 128,100 mg/kg), 1460 mg/kg (133 to 6400 mg/kg), 1030 mg/kg (142 to 5362 mg/kg), and 5370 mg/kg (1214 to 18,155 mg/kg), respectively. The C/N and C/P ratios were 19 (3 to 85) and 27 (2 to 101), respectively. Soil properties of the orchard fields were compared with those of the upland and the paddy fields. The average value of bacterial biomass in the orchard fields was almost the same as that in the upland fields (8.0 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil), but the number was lower than that in the paddy fields (12.9 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil). The average values of TC and TN in the orchard fields fell between those in the upland fields (TC: 33,120 mg/kg, TN: 2010 mg/kg) and the paddy fields (TC: 15,420 mg/kg, TN: 1080</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">mg/kg). The relationship between the bacterial biomass and TC in the orchard fields resembled that in the upland fields. A suitable soil condition for the orchard fields was determined as TC: ≥25,000 mg/kg, TN: ≥1500 mg/kg, TP: ≥900 mg/kg and TK: 2500 - 10,000 mg/kg.</span><span style="font-family:""> </span><span style="font-family:Verdana;">These recommended values will be effective for the improvement of the soil quality in the orchard fields by enhancing the number and activities of microorganisms.
文摘Assessing soil quality is a critical strategy for diagnosing soil status and anticipating concerns in land use systems for agricultural sustainability. In this study, two soil quality assessment indices, the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI), were employed using two indicator selection methods: Total Data Set (TDS) and Minimum Data Set (MDS), focusing on agricultural fields in Golestan province, Iran. A total of 89 soil samples were collected and analyzed for particle size distribution, organic carbon, calcium carbonate equivalent (CCE), electrical conductivity (EC), pH, and plant-essential nutrients, including nitrogen, phosphorus, potassium, zinc, copper, manganese, and iron. Principal component analysis (PCA) was used to extract MDS from TDS, and geostatistical adaptation and correlation analyses were performed to determine the optimal soil quality evaluation index. Our results show that the exponential model better suits the spatial structure of soil quality indicators (IQIMDS: 0.955). Conformity and correlation analyses indicate that the IQI index outperformed the NQI index in estimating soil quality. The superiority of the TDS technique over the MDS technique in terms of accuracy (IQITDSs kappa: 0.155). Linear relationships between different methods showed a higher correlation coefficient (R2 = 0.43) through the application of IQI. This study suggests the use of IQIMDS to provide a reliable measurement that is particularly useful in assessing the quality of agricultural soil.
基金the National Natural Science Foundation of China (41061035, 41371247)the Project of Aid of Science and Technology in Xinjiang, China (201191140) for providing funding for this work
文摘Soil organic carbon (SOC), soil microbial biomass carbon (SMBC) and SMBC quotient (SMBC/SOC, qSMBC) are key indexes of soil biological fertility because of the relationship to soil nutrition supply capacity. Yet it remains unknown how these three indexes change, which limits our understanding about how soil respond to different fertilization practices. Based on a 22-yr (1990-2011) long-term fertilization experiment in northwest China, we investigated the dynamics of SMBC and qSMBC during the growing period of winter wheat, the relationships between the SMBC, qSMBC, soil organic carbon (SOC) concentrations, the carbon input and grain yield of wheat as well. Fertilization treatments were 1) nonfertilization (control); 2) chemical nitrogen plus phosphate plus potassium (NPK); 3) NPK plus animal manure (NPKM); 4) double NPKM (hNPKM) and 5) NPK plus straw (NPKS). Results showed that the SMBC and qSMBC were significantly different among returning, jointing, flowering and harvest stages of wheat under long-term fertilization. And the largest values were observed in the flowering stage. Values for SMBC and qSMBC ranged from 37.5 to 106.0 mg kg1 and 0.41 to 0.61%, respectively. The mean value rank of SMBC during the whole growing period of wheat was hNPKM〉NPK_M〉NPKS〉CK〉NPK. But there were no statistically significant differences between hNPKM and NPKM, or between CK and NPK. The order for qSMBC was NPKS〉NPKM〉CK〉hNPKM〉NPK. These results indicated that NPKS significantly increased the ratio of SMBC to SOC, i.e., qSMBC, compared with NPK fertilizer or other two NPKM fertilizations. Significant linear relationships were observed between the annual carbon input and SOC (P〈0.01) or SMBC (P〈0.05), and between the relative grain yield of wheat and the SOC content as well (P〈0.05). But the qSMBC was not correlated with the annual carbon input. It is thus obvious that the combination of manure, straw with mineral fertilizer may be benefit to increase SOC and improve soil quality than using only mineral fertilizer.
文摘Tissue culture (TC) banana plantlets at the in vitro stage are delicate and devoid of microbes and nutrients that are essential for establishment and subsequent growth. Some microbes are known for function best under certain soil threshold levels of macro and micronutrients and have been associated with growth and performance of TC banana. A green house and field study was conducted to evaluate the effect of combining two commercial biological products [Rhizatech and ECO-T (mycorrhiza and Trichoderma based products, respectively)] with various sources of nitrogen and phosphorous including Mavuno, Minjingu phosphate rock, Calcium Ammonium Nitrate (CAN), manure and diammonium phosphate (DAP) on growth and performance of TC banana in Vertisol and Rhodic Ferralsol soil conditions. Tissue culture plants were initially inoculated with Rhizatech and ECO-T at the acclimatization stage and subsequently at the beginning of the potting stage and field establishment. Addition of nutrient sources was also done at the same stages of plant growth by mixing with the soil substrates prior to planting. The performance of plants was significantly (at p ≤ 0.05) affected by the combinations of nutrient sources depending on the soil type and stage of plant development. The growth of plants in the Vertisol increased with Trichoderma combined with either organic manure, DAP or combined with a macro and micro nutrient source (Mavuno) as compared to the sole application of Trichoderma. Performance of plants treated with combination of mycorrhiza and either Mavuno and minjigu rock phosphate was consistently higher in the Rhodic Ferralsol than either mycorrhiza alone or fertilizer alone. This indicates that TC plants could highly benefit from combined application of microbiological products and inorganic and organic fertilizers. However, a prior knowledge of the product’s microbial formulation and prevailing soil conditions is essential for optimizing the potential benefits of integrating microbe-based product with inorganic and organic fertilizers.
文摘Tobacco-planting plays an important role in ensuring the high-quality tobacco raw materials supply and the local social and economic development in Chenzhou City. In recent years whether tobacco-planting is better for the maintenance and improvement of soil fertility than other crop-planting has been highly concerned. In this study, 16 soil fertility indicators and soil integrated index (<em>IFI</em>) were compared by 21 pairs of fields in Chenzhou city under the rotations of tobacco-rice (TF) and rice-rice (RR), and results showed that, comparing the mean values of soil fertility indicators, the contents of OM, TN, AN, AK, S and <em>IFI</em> were extremely significantly higher in TR than those in RR (p < 0.01), the contents of Cu, Ca, Mg and Fe were significantly higher in TR than those in RR (p < 0.05), but Mn content was significantly lower in TR than those in RR (p < 0.05). Meanwhile the contents of TP, TK and AP were insignificantly higher in TR than those in RR, and the contents of B, Mo and Zn were insignificantly lower in TR than those in RR. The above significant differences in soil fertility indicators were mainly due to relatively higher fertilizer inputs and less nutrient removal during tobacco-growing season than during rape-growing season, the net increase of N, P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O are 8.61, 5.25 and 24.89 kg per 667 m<sup>2</sup> respectively in tobacco-growing season, while the net decrease of N, P<sub>2</sub>O<sub>5 </sub>and K<sub>2</sub>O are 8.88, 4.70 and 4.62 kg per 667 m<sup>2</sup> respectively in rape-growing season. C.V. of soil fertility indicators and <em>IFI</em> were meanly lower in TR (52.25% and 15.95%, respectively) than those in RR (63.07% and 22.12%, respectively). Comparatively, tobacco-planting can improve soil fertility better than rape-planting when rotated with late rice in Chenzhou city. For tobacco-planting, Mg fertilizer should be applied for 23.8% TR fields, while more N, K, Ca, Mg, S and B fertilizers should be applied for 42.86%, 23.81%, 14.29%, 47.62%, 80.95% and 47.62% RR fields, respectively.
文摘Urban and peri-urban agriculture plays a key role by providing many goods and services. In particular, it provides diversified food and employment for vulnerable groups (youth and women). However, it often involves negative externalities due to non-conventional soils fertility management practices. This study aimed to investigate the chemical quality of soils over six (06) sites of the market gardening area of Bobo-Dioulasso (Burkina Faso) as affected by fertilizers uses and sites location. Thirty (30) representative market gardening farms, located in urban, semi-urban and rural areas, were randomly selected from a baseline survey database. Within each farm, composite soil samples made up of 3 individual cores were taken over the 0 - 15 cm soil depth for determining soils carbon, total nitrogen, available phosphorus contents and pH-water. These data were normalized and summarized to compute a synthetic Soil Fertility Index (SFI). The data processing was focused on a Principal Component Analysis and an Ascendant Hierarchical Classification in order to make a typology of the vegetable farms. Fertilizers management effects on soils quality were compared through Variance Analysis (ANOVA) following a GLM procedure in Rstudio software. As main results, soils chemical parameters, except for available K, were affected by the location of the sites. Soils in urban farms are less acidic (on average pH = 6.9), while semi-urban and rural sites (Samadeni, Nakaguana) have more acidic soils. However, the latter site had the highest values of C and N. Moreover, the long-term application of organic matter sources results in improving of the chemical quality of the market garden soil. The SFI is positively correlated with the rate of applied organic fertilizers, and the cultivation duration. On the other hand, soil quality tends to decrease with the expansion of the area, due to a dilution effect of the organic fertilizer doses. All these results suggest that there is a real scope to reinforce the position of the market garden as an opportunity for recycling organic wastes and sequestration of carbon by promoting relevant fertilization packages that strongly rely on organic matters sources (Compost, Biochar, etc.).
文摘The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.