With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface ...The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface engineering,and to obtain the scheme with minimum conflict and optimal benefit in each step.This technology is based on the concept of global optimization to maximize production and profit,reduce costs and increase benefit.This paper elaborates the current situation of integrated simulation technology of reservoir-wellbore-pipe network both at home and abroad,discusses its correlation with the primary business of Sinopec and its development from three aspects of modeling,cloud platform and intellectualization.Suggestions on its future development are put forward from underlying data,software platform,popularization and application,and cross-border integration to provide means and guidance for the construction of intelligent oil and gas fields.The results show that the integrated simulation of reservoir-wellbore-pipe network can better reflect the optimization requirements of each step,avoid the ineffective operation of field equipment,and effectively improve the efficiency of research and management.Coupling solution,global optimization method and pressure fitting,which can make the simulation results reflect the real situation,are the key technologies for the network.The theoretical technology and main function research of integrated simulation technology have been mature,but the large-scale application and local function improvement of oil and gas fields are yet to be promoted.In the future,the integrated simulation of reservoir-wellbore-pipe network will develop from digitalization to modeling and intellectualization,from local simulation to cloud computing,and from manual intervention to intelligent decision-making.We suggest speeding up the construction of the unified database and model base of the whole underlying platform,strengthening the construction of software integration and integration platform with independent intellectual property rights,speeding up the popularization and application of intelligent oil and gas field demonstration projects,and strengthening the integration of oil and gas industry with artificial intelligence(AI),big data and block chain for its development.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati...In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.展开更多
The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersiv...The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersive media(IM) has attracted users’ attention for its virtualization, but it poses challenges to network performance, e.g. bandwidth, rate, latency. However, the SAGIN has limitations in supporting IM services, such as 4 K/8 K video, virtual reality, and interactive games. In this paper, a novel service customized SAGIN architecture for IM applications(SAG-IM) is proposed, which achieves content interactive and real-time communication among terminal users. State-of-the-art research is investigated in detail to facilitate the combination of SAGIN and service customized technology, which provides endto-end differentiated services for users. Besides, the functional components of SAG-IM contain the infrastructure layer, perception layer, intelligence layer, and application layer, reaching the capabilities of intelligent management of the network. Moreover, to provide IM content with ultra-high-definition and high frame rate for the optimal user experience, the promising key technologies on intelligent routing and delivery are discussed. The performance evaluation shows the superiority of SAG-IM in supporting IM service.Finally, the prospects in practical application are high-lighted.展开更多
The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is ...The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.展开更多
The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become ...The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.展开更多
Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, w...Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.展开更多
In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called &...In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called "civil aircraft assisted SAGIN(CAA-SAGIN)". The assistance of civil aircrafts can reduce the stress of satellite networks, improve the performance of SAGIN, decrease the construction cost and save space resources. Taking the Chinese mainland as an example, this paper has analyzed the distribution of civil aircrafts, and obtained the coverage characteristics of civil aircraft assisted networks(CAAN). Taking Starlink as the benchmark, this paper has calculated the service gap of CAAN, and designed the joint coverage constellation. The simulation results prove that the number of satellites in CAASAGIN can be greatly reduced with the assistance of civil aircrafts at the same data rate.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, S...The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.展开更多
Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space in...Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.展开更多
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network...As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.展开更多
According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are ...According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.展开更多
An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power fallof...An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellit...The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.展开更多
The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the ...The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.展开更多
An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the sev...An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.展开更多
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
基金funded by the SINOPEC Science and Technology Project(No.P18080).
文摘The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface engineering,and to obtain the scheme with minimum conflict and optimal benefit in each step.This technology is based on the concept of global optimization to maximize production and profit,reduce costs and increase benefit.This paper elaborates the current situation of integrated simulation technology of reservoir-wellbore-pipe network both at home and abroad,discusses its correlation with the primary business of Sinopec and its development from three aspects of modeling,cloud platform and intellectualization.Suggestions on its future development are put forward from underlying data,software platform,popularization and application,and cross-border integration to provide means and guidance for the construction of intelligent oil and gas fields.The results show that the integrated simulation of reservoir-wellbore-pipe network can better reflect the optimization requirements of each step,avoid the ineffective operation of field equipment,and effectively improve the efficiency of research and management.Coupling solution,global optimization method and pressure fitting,which can make the simulation results reflect the real situation,are the key technologies for the network.The theoretical technology and main function research of integrated simulation technology have been mature,but the large-scale application and local function improvement of oil and gas fields are yet to be promoted.In the future,the integrated simulation of reservoir-wellbore-pipe network will develop from digitalization to modeling and intellectualization,from local simulation to cloud computing,and from manual intervention to intelligent decision-making.We suggest speeding up the construction of the unified database and model base of the whole underlying platform,strengthening the construction of software integration and integration platform with independent intellectual property rights,speeding up the popularization and application of intelligent oil and gas field demonstration projects,and strengthening the integration of oil and gas industry with artificial intelligence(AI),big data and block chain for its development.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2024ZCJH01in part by the National Natural Science Foundation of China(NSFC)under Grant No.62271081in part by the National Key Research and Development Program of China under Grant No.2020YFA0711302.
文摘In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms.
基金supported by the National Key Research and Development Program of China (No.2019YFB1803103)in part by the BUPT Excellent Ph.D. Students Foundation (No.CX2021113)。
文摘The space-air-ground integrated network(SAGIN) is regarded as the key approach to realize global coverage in future network and it reaches broad access for various services. Being the new paradigm of service, immersive media(IM) has attracted users’ attention for its virtualization, but it poses challenges to network performance, e.g. bandwidth, rate, latency. However, the SAGIN has limitations in supporting IM services, such as 4 K/8 K video, virtual reality, and interactive games. In this paper, a novel service customized SAGIN architecture for IM applications(SAG-IM) is proposed, which achieves content interactive and real-time communication among terminal users. State-of-the-art research is investigated in detail to facilitate the combination of SAGIN and service customized technology, which provides endto-end differentiated services for users. Besides, the functional components of SAG-IM contain the infrastructure layer, perception layer, intelligence layer, and application layer, reaching the capabilities of intelligent management of the network. Moreover, to provide IM content with ultra-high-definition and high frame rate for the optimal user experience, the promising key technologies on intelligent routing and delivery are discussed. The performance evaluation shows the superiority of SAG-IM in supporting IM service.Finally, the prospects in practical application are high-lighted.
基金supported by the the National Key Research and Development Program of China under No. 2019YFB1803200National Natural Science Foundation of China under Grants 61620106001。
文摘The cooperation of multiple Unmanned Aerial Vehicles(UAVs) has become a promising scenario in Space-Air-Ground Integrated Networks(SAGINs) recently due to their widespread applications,where wireless communication is a basic necessity and is normally categorized into control and nonpayload communication(CNPC) as well as payload communication. In this paper, we attempt to tackle two challenges of UAV communication respectively on establishing reliable CNPC links against the high mobility of UAVs as well as changeable communication conditions, and on offering dynamic resource optimization for Quality-of-Service(QoS) guaranteed payload communication with variable link connectivity. Firstly, we propose the concept of air controlling center(ACC), a virtual application equipped on the infrastructure in SAGINs, which can collect global information for estimating UAV trajectory and communication channels. We then introduce the knapsack problem for modelling resource optimization of UAV communication in order to provide optimal access points for both CNPC and payload communication. Meanwhile, using the air controlling information, predictive decision algorithm and handover strategy are introduced for the reliable connection with multiple access points. Simulation results demonstrate that our proposal ensures an approximate always-on reliable accessing of communication links and outperforms the existing methods against high mobility,sparse distribution, and physical obstacles.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1804803the National Natural Science Foundation of China under Grant 61872382the Research and Development Program in Key Areas of Guangdong Province under Grant No.2018B010113001。
文摘The Space-Air-Ground Integrated Network(SAGIN) realizes the integration of space, air,and ground networks, obtaining the global communication coverage.Software-Defined Networking(SDN) architecture in SAGIN has become a promising solution to guarantee the Quality of Service(QoS).However, the current routing algorithms mainly focus on the QoS of the service, rarely considering the security requirement of flow. To realize the secure transmission of flows in SAGIN, we propose an intelligent flow forwarding scheme with endogenous security based on Mimic Defense(ESMD-Flow). In this scheme, SDN controller will evaluate the reliability of nodes and links, isolate malicious nodes based on the reliability evaluation value, and adapt multipath routing strategy to ensure that flows are always forwarded along the most reliable multiple paths. In addition, in order to meet the security requirement of flows, we introduce the programming data plane to design a multiprotocol forwarding strategy for realizing the multiprotocol dynamic forwarding of flows. ESMD-Flow can reduce the network attack surface and improve the secure transmission capability of flows by implementing multipath routing and multi-protocol hybrid forwarding mechanism. The extensive simulations demonstrate that ESMD-Flow can significantly improve the average path reliability for routing and increase the difficulty of network eavesdropping while improving the network throughput and reducing the average packet delay.
基金supported by the National Natural Science Foundation of China under Grant 62071364in part by the Aeronautical Science Foundation of China under Grant 2020Z073081001+2 种基金in part by the Fundamental Research Funds for the Central Universities under Grant JB210104in part by the Shaanxi Provincial Key Research and Development Program under Grant 2019GY-043in part by the 111 Project under Grant B08038。
文摘Passive detection of moving target is an important part of intelligent surveillance. Satellite has the potential to play a key role in many applications of space-air-ground integrated networks(SAGIN). In this paper, we propose a novel intelligent passive detection method for aerial target based on reservoir computing networks. Specifically, delayed feedback networks are utilized to refine the direct signals from the satellite in the reference channels. In addition, the satellite direct wave interference in the monitoring channels adopts adaptive interference suppression using the minimum mean square error filter. Furthermore, we employ decoupling echo state networks to predict the clutter interference in the monitoring channels and construct the detection statistics accordingly. Finally, a multilayer perceptron is adopted to detect the echo signal after interference suppression. Extensive simulations is conducted to evaluate the performance of our proposed method. Results show that the detection probability is almost 100% when the signal-to-interference ratio of echo signal is-36 dB, which demonstrates that our proposed method achieves efficient passive detection for aerial targets in typical SAGIN scenarios.
基金supported by National Nature Science Foundation of China (No. 61871155)。
文摘In this paper, we propose a novel AIenabled space-air-ground integrated networks(SAGIN). This new integrated networks architecture consists of LEO satellites and civil aircrafts carrying aerial base stations, called "civil aircraft assisted SAGIN(CAA-SAGIN)". The assistance of civil aircrafts can reduce the stress of satellite networks, improve the performance of SAGIN, decrease the construction cost and save space resources. Taking the Chinese mainland as an example, this paper has analyzed the distribution of civil aircrafts, and obtained the coverage characteristics of civil aircraft assisted networks(CAAN). Taking Starlink as the benchmark, this paper has calculated the service gap of CAAN, and designed the joint coverage constellation. The simulation results prove that the number of satellites in CAASAGIN can be greatly reduced with the assistance of civil aircrafts at the same data rate.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
基金funded by Tsinghua University-China Mobile Communications Group Co., Ltd. Joint Institute。
文摘The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911)C.G.(Chao Guo),the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo)+2 种基金Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo)Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.
基金supported by National Natural Science Foundation of China(No.62171158)the project“The Major Key Project of PCL(PCL2021A03-1)”from Peng Cheng Laboratorysupported by the Science and the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology(2018B030322004).
文摘As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights.
文摘According to the operational characteristics of the logistics networks for the third party logistics supplier (3PLS), the forward and reverse logistics networks together for 3PLS under the uncertain environment are designed. First, a fuzzy model is proposed by taking multiple customers, multiple commodities, capacitated facility location and integrated logistics facility layout into account. In the model, the fuzzy customer demands and transportation rates are illustrated by triangular fuzzy numbers. Secondly, the fuzzy model is converted into a crisp model by applying fuzzy chance constrained theory and possibility theory, and one hybrid genetic algorithm is designed for the crisp model. Finally, two different examples are designed to illustrate that the model and solution discussed are valid.
基金The National Natural Science Foundation of China(No.60872004)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2010A08)the Fundamental Research Funds for the Central Universities(No.2009B21814)
文摘An analytical approach to evaluate the performance of the 3G/ad hoc integrated network is presented. A channel model capturing both path loss and shadowing is applied to the analysis so as to characterize power falloff vs. distance. The 3G/ad hoc integrated network scenario model is introduced briefly. Based on this model, several performances of the 3G/ ad hoc integrated network in terms of outage probability, call dropping probability and new call blocking probability are evaluated. The corresponding performance formulae are deduced in accordance with the analytical models. Meanwhile, the formula of the 3G/ad hoc integrated network capacity is deduced on the basis of the formula of the outage probability. It is observed from extensive simulation and numerical analysis that the 3G/ad hoc integrated network remarkably outperforms the 3G network with regards to the network performance. This derived evaluation approach can be applied into planning and optimization of the 3G/ad hoc network.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported in part by the National Natural Science Foundation of China (No. 61571104)the Sichuan Science and Technology Program (No. 2018JY0539)+2 种基金the Key projects of the Sichuan Provincial Education Department (No. 18ZA0219)the Fundamental Research Funds for the Central Universities (No. ZYGX2017KYQD170)the Innovation Funding (No. 2018510007000134)
文摘The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.
基金supportedin part by the National Science Foundation of China(NSFC)under Grant 61631005,Grant 61771065,Grant 61901048in part by the Zhijiang Laboratory Open Project Fund 2020LCOAB01in part by the Beijing Municipal Science and Technology Commission Research under Project Z181100003218015。
文摘The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.
基金the National Key Research and Development Program of China under grant 2020YFB1807700the National Natural Science Foundation of China under Grants U1701265,U1809211Key Program of Marine Economy Development,Department of Natural Resources of Guangdong Province under Grant YZRZH[2020]009。
文摘An important vision of next generation mobile system is to provide global internet access.The Space-Terrestrial Integrated Network(STIN)has been proposed and intensively studied to tackle this challenge.Due to the severe attenuation of radio signals in water,the STIN cannot be directly applied in underwater scenarios.In this paper we envision a framework of integrated radio-acoustic network arming at high-efficient data transmission in underwater scenarios,where acoustic signal is for underwater communication and radio signal is for surface and air communications.Since radio links have much higher data transmission rate and lower delay,in the integrated radio-acoustic network,the acoustic links easily become congested,at the same time the radio links are not fully utilized.We therefore propose that the integrated radio-acoustic network should be properly designed to minimize the hop count of acoustic links,as well as the signaling overhead in the acoustic subnetwork.We then present a novel network framework and the relative technologies to help moving the signaling overhead to the radio subnetwork.