期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
1
作者 Safa Khari Zahra Rahmani Behrooz Rezaie 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期11-22,共12页
An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ... An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties. 展开更多
关键词 CHAOS rod-type plasma torch intelligent integral terminal sliding mode control Bee algorithm
下载PDF
A Sliding Mode Approach to Enhance the Power Quality of Wind Turbines Under Unbalanced Voltage Conditions 被引量:2
2
作者 Mohammad Javad Morshed Afef Fekih 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期566-574,共9页
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an... An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC. 展开更多
关键词 Doubly fed induction generators(DFIG) fuzzy approach integral terminal sliding mode control(ITSMC) OBSERVER power quality voltage unbalances wind turbines
下载PDF
Robust backstepping global integral terminal sliding mode controller to enhance dynamic stability of hybrid AC/DC microgrids 被引量:2
3
作者 Tushar Kanti Roy Subarto Kumar Ghosh Sajeeb Saha 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第1期139-151,共13页
In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the ... In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the switch-ing signals of the inverter,interlinking the DC-bus with the AC-bus in an AC/DC microgrid for a seamless interface and regulation of the output power of renewable energy sources(Solar Photovoltaic unit,PMSG-based wind farm),and Battery Energy Storage System.The proposed control approach guarantees the dynamic stability of a hybrid AC/DC microgrid by regulating the associated states of the microgrid system to their intended values.The dynamic stabil-ity of the microgrid system with the proposed control law has been proved using the Control Lyapunov Function.A simulation analysis was performed on a test hybrid AC/DC microgrid system to demonstrate the performance of the proposed control strategy in terms of maintaining power balance while the system’s operating point changed.Furthermore,the superiority of the proposed approach has been demonstrated by comparing its performance with the existing Sliding Mode Control(SMC)approach for a hybrid AC/DC microgrid. 展开更多
关键词 Dynamic stability Hybrid AC/DC microgrids Power balance Robust backstepping controller Global integral terminal sliding mode controller Switching control signals
原文传递
Dynamic event-triggered finite-time control for multiple Euler-Lagrange systems using integral terminal sliding mode 被引量:1
4
作者 WANG Yan LI Xiao-Meng +2 位作者 YUAN Wang YAO DeYin LI HongYi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第11期3164-3173,共10页
The tracking control for multiple Euler-Lagrange systems with external disturbances in finite time under undirected topology is investigated in this paper.A dynamic model is established for the multi-EL systems to acc... The tracking control for multiple Euler-Lagrange systems with external disturbances in finite time under undirected topology is investigated in this paper.A dynamic model is established for the multi-EL systems to accurately describe the general mechanical system.Furthermore,an integral terminal sliding mode surface is devised to converge the tracking errors of the system state to a neighborhood of zero within finite time,and the designed finite-time controller ensures fast convergence and high steady-state accuracy.To reduce the controller update frequency and network transmission communication load,a dynamic event-triggered mechanism is introduced between the sensor and controller,and no Zeno behavior was observed.Therefore,the Lyapunov stability theory and finite-time stability criterion prove that all signals in the closed-loop system are uniformly ultimately bounded in finite time.Finally,the simulation results verified the effectiveness of the proposed control method. 展开更多
关键词 dynamic event-triggered mechanism external disturbances finite-time control integral terminal sliding mode control multiple Euler–Lagrange systems
原文传递
Adaptive fractional integral terminal sliding mode power control of UPFC in DFIG wind farm penetrated multimachine power system 被引量:6
5
作者 P.K.Dash R.K.Patnaik S.P.Mishra 《Protection and Control of Modern Power Systems》 2018年第1期79-92,共14页
With an aim to improve the transient stability of a DFIG wind farm penetrated multimachine power system(MPN),an adaptive fractional integral terminal sliding mode power control(AFITSMPC)strategy has been proposed for ... With an aim to improve the transient stability of a DFIG wind farm penetrated multimachine power system(MPN),an adaptive fractional integral terminal sliding mode power control(AFITSMPC)strategy has been proposed for the unified power flow controller(UPFC),which is compensating the MPN.The proposed AFITSMPC controls the dq-axis series injected voltage,which controls the admittance model(AM)of the UPFC.As a result the power output of the DFIG stabilizes which helps in maintaining the equilibrium between the electrical and mechanical power of the nearby generators.Subsequently the rotor angular deviation of the respective generators gets recovered,which significantly stabilizes the MPN.The proposed AFITSMPC for the admittance model of the UPFC has been validated in a DFIG wind farm penetrated 2 area 4 machine power system in the MATLAB environment.The robustness and efficacy of the proposed control strategy of the UPFC,in contrast to the conventional PI control is vindicated under a number of intrinsic operating conditions,and the results analyzed are satisfactory. 展开更多
关键词 Adaptive fractional integral terminal sliding mode power control Doubly fed induction generator Multimachine power network Unified power flow controller
原文传递
Robust Chattering-Free Finite Time Attitude Tracking Control with Input Saturation 被引量:2
6
作者 CHEN Haitao SONG Shenmin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第6期1597-1629,共33页
This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking c... This paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty,external disturbance,and saturated control input by designing two robust att计ude tracking controllers.The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system.In this case,only the external disturbance with the prior information is considered.Then,to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance,a novel integral terminal sliding mode surface(ITSMS)is designed and associated w计h the continuous adaptive control method.Besides,a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem.Digital simulations are presented to verify the effectiveness of the proposed controllers. 展开更多
关键词 Chattering-free continuous adaptive control finite time convergence input saturation integral terminal sliding mode surface
原文传递
Improved Synergetic Current Control for Grid-connected Microgrids and Distributed Generation Systems 被引量:1
7
作者 A.Elnady A.Noureldin A.A.Adam 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1302-1313,共12页
This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new ... This paper presents the development of improved synergetic current control for the injected current of an inverter in the grid-connected microgrid and the distributed generation system(DGS). This paper introduces new formulas of the macro-variable functions for integral synergetic control(SC)and integral fast terminal SC, which both have an integral term to guarantee zero steady-state error. The proposed integral SC and integral fast terminal SC achieve a seamless performance such as the fast convergence, minimal overshoot, zero steady-state error, and chattering-free operation. To demonstrate the meritorious performance of the proposed scheme for injected current control, it is compared with the performance of a proportional-integral(PI) controller and advanced exponential sliding mode control(SMC). Finally, the practicality of the proposed scheme is justified by experimental results obtained through rapid control prototyping(RCP) using the dSPACESCALEXIO platform. 展开更多
关键词 Integral synergetic control(SC) current control integral fast terminal SC advanced exponential sliding mode control(SMC) proportional-integral(PI)control microgrid distributed generation system(DGS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部