Clinical laboratory tests are basic elements that support healthcare tasks such as disease detection, diagnosis and monitoring of response to treatments. Current laboratory information systems focus on the patient dat...Clinical laboratory tests are basic elements that support healthcare tasks such as disease detection, diagnosis and monitoring of response to treatments. Current laboratory information systems focus on the patient database, tests and results, with multiple modules available, connecting with the various analytical systems or work areas. However laboratory information systems functioned as “islands of information”, because their design was fundamentally inward-looking and disconnected from other healthcare computer applications. Actually, the Electronic Health Register (EHR) is considered by clinicians as a tool with great potential healthcare benefits. The EHR, in the sense of a unique and complete record of a patient’s healthcare and state of health, regardless of the healthcare level used, is a real attempt to eliminate these “islands of information” and need modules to act as “bridges” with the laboratory information systems. This type of module, which in generic terms may be referred to as a laboratory test request module, has become an essential feature of the EHR. These modules need to use a laboratory coding system as a common language for exchanging information, ensuring that tests and results are unequivocally identified. The development of the laboratory test request module requires the commitment of professionals and political authorities, being necessary time for their design and an adequate pilot phase. The laboratory professionals have to assume a leadership role in the whole process of design, development and implementation of these modules, integrating in the equipment of information technologies of healthcare providers. In our manuscript we review the elements that may prove electronic systems for requesting clinical laboratory test into digital clinical records and the key elements to move from theory to practice.展开更多
I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artifi...I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.展开更多
This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. T...This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.展开更多
A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplec...A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.展开更多
The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic f...The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained. The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived. The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented. Two examples are presented to illustrate these results.展开更多
This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed o...This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed of the inner wheel has to be different from that of the outer wheel in order to prevent the vehicle from vibrating and travelling an unsteady path. Because each wheel of this electrical vehicle has independent driving force, an electrical differential system is required to replace a gear differential system. However, it is difficult to analyse the nonlinear behaviour of the differential system in relation to the speed and steering angle, as well as vehicle structure. The proposed propulsion system consists of two permanent magnet synchronous machines that ensure the drive of the two back driving wheels. The proposed control structure called independent machines for speed control allows the achievement of an electronic differential which ensures the control of the vehicle behaviour on the road. It also allows to control, independently, every driving wheel to turn at different speeds in any curve. Analysis and simulation results of the proposed system are presented in this paper.展开更多
An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database...An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database provided by AutoCAD R14, and EDM feature modeling is realized in AutoCAD environments.展开更多
Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs prov...Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs provide the integration of renewable energy and storage to balance the energy demand and supply as needed for a given system design.FeLPT’s flexibility for processing,control,and re-configurability offers the capability for flexible transmission for effective flow control and enable SμGs connectivity while still keeping multiscale system level control.Early adaptors for combined heat and power have demonstrated significant economic benefits while reducing environmental foot prints.They bring tremendous benefits to utility companies also.With storage and active control capabilities,a 300-percent increase in bulk transmission and distribution lines are possible without having to increase capacity.SμGs and FeLPTs will also enable the utility industry to be better prepared for the emerging large increase in base load demand from electric transportation and data centers.This is a win-win-win situation for the consumer,the utilities(grid operators),and the environment.SμGs and FeLPTs provide value in power substation,energy surety,reliability,resiliency,and security.It is also shown that the initial cost associated with SμG and FeLPTs deployment can be easily offset with reduced operating cost,which in turn reduces the total life-cycle cost by 33%to 67%.展开更多
Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable e...Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.展开更多
Using formulae for one- and two-electron integrals of Coulomb interaction potential fk (r) = r^-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of ψ^α-expo...Using formulae for one- and two-electron integrals of Coulomb interaction potential fk (r) = r^-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of ψ^α-exponential-type orbitals (α = 1, 0,-1,-2,…), we perform the calculations for isoelectronic series of the He atom containing nuclear charges from 2 to 10, where k = 1 - μ (-1 〈 μ 〈 0). For this purpose we have used the double-zeta approximation, the configuration interaction and coupled-cluster methods employing the integer-n Slater-type orbitals as basis sets. It is demonstrated that the results of calculations obtained are better than the numerical Hartree-Fock values.展开更多
Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrode...Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrodes. Our results show that different terminations at the carbon nanotube end strongly affect the transport properties of the switch. In the case of H-termination the current at low biases is dominated by non-resonant tunneling. In the N-termination case the current at low biases is dominated by quasi-resonant tunneling and is increased by several orders of magnitude. The enhancement is discussed by the molecular projected self-consistent Hamiltonian level, transmission function, and local density of states.展开更多
The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid moderniz...The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.展开更多
The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction...The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction x, due to the increase in the polarization charge at the AlGaN/InGaN interface. The electron sheet density is enhanced with the doping in the AlGaN layer. The sheet carrier density is as high as 3.7×1013 cm^-2 at the donor density of 10×1018 cm^-3 for the HEMT structure with x=0.3. The contribution of additional donor density on the electron sheet density is nearly independent of the In mole fraction.展开更多
Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 5...Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.展开更多
This paper discusses a security-constrained integrated coordination scheduling framework for an integrated electricity-natural gas system(IEGS),in which both tight interdependence between electricity and natural gas t...This paper discusses a security-constrained integrated coordination scheduling framework for an integrated electricity-natural gas system(IEGS),in which both tight interdependence between electricity and natural gas transmission networks and their distinct dynamic characteristics at different timescales are fully considered.The proposed framework includes two linear programming models.The first one focuses on hour-based steady-state coordinated economic scheduling on power outputs of electricity generators and mass flow rates of natural gas sources while considering electricity transmission N-1 contingencies.Using the steady-state mass flow rate solutions of gas sources as the initial value,the second one studies second-based slow gas dynamics and optimizes pressures of gas sources to ensure that inlet gas pressure of gas-fired generator is within the required pressure range at any time between two consecutive steady-state scheduling.The proposed framework is validated via an IEGS consisting of an IEEE 24-bus electricity network and a15-node 14-pipeline natural gas network coupled by gasfired generators.Numerical results illustrate the effectiveness of the proposed framework in coordinating electricity and natural gas systems as well as achieving economic and reliable operation of IEGS.展开更多
With the widespread penetration of renewable energy sources and energy storage systems,the problem of energy management has received increasing attention.One of the systems that network owners consider today is the po...With the widespread penetration of renewable energy sources and energy storage systems,the problem of energy management has received increasing attention.One of the systems that network owners consider today is the power-to-gas(P2G)system.This system causes surplus electricity generated from renewable energy resources or batteries in the network to be converted into gas and sold to the gas network.Two reasons for the existence of gas distributed generation resources and P2G systems cause the two power and gas networks to interact.Energy management and profit making considering these two networks,as a co-optimization of integrated energy systems,is a topic that has been discussed in this study to achieve the best optimal answer.Since the production of renewable energy resources and the purchase price of energy are uncertain,a scenario-based method has been chosen for modelling.Demand-side management is also one of the important problems in optimal operation of the electricity network,which can have a significant impact on reducing peak load and increasing profits.In this paper,a mixed-integer quadratic programming model for co-optimization of electric distribution and gas networks in the presence of distributed generation resources,P2G systems,storage facilities,electric vehicles and demand-side management is presented.The 33-bus distribution network is intended to analyse the proposed model.The results of different scenarios show the efficiency of the proposed model.Several key points are deduced from the obtained results:(i)demand-side management is able to reduce the peak load of the network,(ii)the presence of renewable resources and batteries can cause the network to convert excess electricity into gas and sell it to the gas network in the market and(iii)distributed generation can reduce the purchase of energy from the upstream network and cause a 36% reduction in the cost function.展开更多
In conjunction with the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA),the Department of Electrical and Computer Engineering at the University of Massachusetts Amherst invi...In conjunction with the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA),the Department of Electrical and Computer Engineering at the University of Massachusetts Amherst invites applications for a tenure-track position in Integrative Systems Engineering(ISE) at the Assistant Professor level to begin September 2009.展开更多
文摘Clinical laboratory tests are basic elements that support healthcare tasks such as disease detection, diagnosis and monitoring of response to treatments. Current laboratory information systems focus on the patient database, tests and results, with multiple modules available, connecting with the various analytical systems or work areas. However laboratory information systems functioned as “islands of information”, because their design was fundamentally inward-looking and disconnected from other healthcare computer applications. Actually, the Electronic Health Register (EHR) is considered by clinicians as a tool with great potential healthcare benefits. The EHR, in the sense of a unique and complete record of a patient’s healthcare and state of health, regardless of the healthcare level used, is a real attempt to eliminate these “islands of information” and need modules to act as “bridges” with the laboratory information systems. This type of module, which in generic terms may be referred to as a laboratory test request module, has become an essential feature of the EHR. These modules need to use a laboratory coding system as a common language for exchanging information, ensuring that tests and results are unequivocally identified. The development of the laboratory test request module requires the commitment of professionals and political authorities, being necessary time for their design and an adequate pilot phase. The laboratory professionals have to assume a leadership role in the whole process of design, development and implementation of these modules, integrating in the equipment of information technologies of healthcare providers. In our manuscript we review the elements that may prove electronic systems for requesting clinical laboratory test into digital clinical records and the key elements to move from theory to practice.
文摘I firmly believe that of systems engineering is the requirement-driven force for the progress ofsoftware engineering, artificial intelligence and electronic technologies. The development ofsoftware engineering, artificial intelligence and electronic technologies is the technical supportfor the progress of systems engineering. INTEGRATION can be considered as "bridging" the ex-isting technologies and the People together into a coordinated SYSTEM.
基金Project supported by State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10672143 and 10471145) and the Natural Science Foundation of Henan Province Government, China (Grant Nos 0311011400 and 0511022200).
文摘This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciencesthe Natural Science Foundation of Henan Province Government, China (Grant No 0511022200)
文摘A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
基金Project supported by the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos 10471145 and 10372053) and the Natural Science Foundation of Henan Provincial Government of China (Grant Nos 0311011400 and 0511022200).
文摘The algebraic structure and Poisson's integral theory of mechanico-electrical systems are studied. The Hamilton canonical equations and generalized Hamilton canonical equations and their the contravariant algebraic forms for mechanico-electrical systems are obtained. The Lie algebraic structure and the Poisson's integral theory of Lagrange mechanico-electrical systems are derived. The Lie algebraic structure admitted and Poisson's integral theory of the Lagrange-Maxwell mechanico-electrical systems are presented. Two examples are presented to illustrate these results.
文摘This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed of the inner wheel has to be different from that of the outer wheel in order to prevent the vehicle from vibrating and travelling an unsteady path. Because each wheel of this electrical vehicle has independent driving force, an electrical differential system is required to replace a gear differential system. However, it is difficult to analyse the nonlinear behaviour of the differential system in relation to the speed and steering angle, as well as vehicle structure. The proposed propulsion system consists of two permanent magnet synchronous machines that ensure the drive of the two back driving wheels. The proposed control structure called independent machines for speed control allows the achievement of an electronic differential which ensures the control of the vehicle behaviour on the road. It also allows to control, independently, every driving wheel to turn at different speeds in any curve. Analysis and simulation results of the proposed system are presented in this paper.
文摘An integrated CAD/CAPP/CAM system modeling for Electric Discharge Machining (EDM) is constructed on the basis of an integrated engineering database. EDM feature objects are developed using the object oriented database provided by AutoCAD R14, and EDM feature modeling is realized in AutoCAD environments.
文摘Structured microgrids(SμGs)and Flexible electronic large power transformers(FeLPTs)are emerging as two essential technologies for renewable energy integration,flexible power transmission,and active control.SμGs provide the integration of renewable energy and storage to balance the energy demand and supply as needed for a given system design.FeLPT’s flexibility for processing,control,and re-configurability offers the capability for flexible transmission for effective flow control and enable SμGs connectivity while still keeping multiscale system level control.Early adaptors for combined heat and power have demonstrated significant economic benefits while reducing environmental foot prints.They bring tremendous benefits to utility companies also.With storage and active control capabilities,a 300-percent increase in bulk transmission and distribution lines are possible without having to increase capacity.SμGs and FeLPTs will also enable the utility industry to be better prepared for the emerging large increase in base load demand from electric transportation and data centers.This is a win-win-win situation for the consumer,the utilities(grid operators),and the environment.SμGs and FeLPTs provide value in power substation,energy surety,reliability,resiliency,and security.It is also shown that the initial cost associated with SμG and FeLPTs deployment can be easily offset with reduced operating cost,which in turn reduces the total life-cycle cost by 33%to 67%.
基金supported in part by the Science and Technology Development Fund,Macao SAR(File no.SKL-IOTSC(UM)-2021-2023,File no.0003/2020/AKP,and File no.0117/2022/A3)the Natural Science Foundation of Jiangsu Province,China(Operational reliability evaluation of multi-source and heterogeneous urban multi-energy systems,BK20220261).
文摘Green hydrogen can be produced by consuming surplus renewable generations.It can be injected into the natural gas networks,accelerating the decarbonization of energy systems.However,with the fluctuation of renewable energies,the gas composition in the gas network may change dramatically as the hydrogen injection fluctuates.The gas interchangeability may be adversely affected.To investigate the ability to defend the fluctuated hydrogen injection,this paper proposes a gas interchangeability resilience evaluation method for hydrogen-blended integrated electricity and gas systems(H-IEGS).First,gas interchangeability resilience is defined by proposing several novel metrics.Then,A two-stage gas interchangeability management scheme is proposed to accommodate the hydrogen injections.The steady-state optimal electricity and hydrogen-gas energy flow technique is performed first to obtain the desired operating state of the H-IEGS.Then,the dynamic gas composition tracking is implemented to calculate the real-time traveling of hydrogen contents in the gas network,and evaluate the time-varying gas interchangeability metrics.Moreover,to improve the computation efficiency,a self-adaptive linearization technique is proposed and embedded in the solution process of discretized partial derivative equations.Finally,an IEEE 24 bus reliability test system and Belgium natural gas system are used to validate the proposed method.
文摘Using formulae for one- and two-electron integrals of Coulomb interaction potential fk (r) = r^-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of ψ^α-exponential-type orbitals (α = 1, 0,-1,-2,…), we perform the calculations for isoelectronic series of the He atom containing nuclear charges from 2 to 10, where k = 1 - μ (-1 〈 μ 〈 0). For this purpose we have used the double-zeta approximation, the configuration interaction and coupled-cluster methods employing the integer-n Slater-type orbitals as basis sets. It is demonstrated that the results of calculations obtained are better than the numerical Hartree-Fock values.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2009AL004.
文摘Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrodes. Our results show that different terminations at the carbon nanotube end strongly affect the transport properties of the switch. In the case of H-termination the current at low biases is dominated by non-resonant tunneling. In the N-termination case the current at low biases is dominated by quasi-resonant tunneling and is increased by several orders of magnitude. The enhancement is discussed by the molecular projected self-consistent Hamiltonian level, transmission function, and local density of states.
文摘The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.
文摘The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction x, due to the increase in the polarization charge at the AlGaN/InGaN interface. The electron sheet density is enhanced with the doping in the AlGaN layer. The sheet carrier density is as high as 3.7×1013 cm^-2 at the donor density of 10×1018 cm^-3 for the HEMT structure with x=0.3. The contribution of additional donor density on the electron sheet density is nearly independent of the In mole fraction.
文摘Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.
基金supported by National Natural Science Foundation of China(No.51777182)in part supported by the U.S.National Science Foundation(No.CMMI-1635339).
文摘This paper discusses a security-constrained integrated coordination scheduling framework for an integrated electricity-natural gas system(IEGS),in which both tight interdependence between electricity and natural gas transmission networks and their distinct dynamic characteristics at different timescales are fully considered.The proposed framework includes two linear programming models.The first one focuses on hour-based steady-state coordinated economic scheduling on power outputs of electricity generators and mass flow rates of natural gas sources while considering electricity transmission N-1 contingencies.Using the steady-state mass flow rate solutions of gas sources as the initial value,the second one studies second-based slow gas dynamics and optimizes pressures of gas sources to ensure that inlet gas pressure of gas-fired generator is within the required pressure range at any time between two consecutive steady-state scheduling.The proposed framework is validated via an IEGS consisting of an IEEE 24-bus electricity network and a15-node 14-pipeline natural gas network coupled by gasfired generators.Numerical results illustrate the effectiveness of the proposed framework in coordinating electricity and natural gas systems as well as achieving economic and reliable operation of IEGS.
文摘With the widespread penetration of renewable energy sources and energy storage systems,the problem of energy management has received increasing attention.One of the systems that network owners consider today is the power-to-gas(P2G)system.This system causes surplus electricity generated from renewable energy resources or batteries in the network to be converted into gas and sold to the gas network.Two reasons for the existence of gas distributed generation resources and P2G systems cause the two power and gas networks to interact.Energy management and profit making considering these two networks,as a co-optimization of integrated energy systems,is a topic that has been discussed in this study to achieve the best optimal answer.Since the production of renewable energy resources and the purchase price of energy are uncertain,a scenario-based method has been chosen for modelling.Demand-side management is also one of the important problems in optimal operation of the electricity network,which can have a significant impact on reducing peak load and increasing profits.In this paper,a mixed-integer quadratic programming model for co-optimization of electric distribution and gas networks in the presence of distributed generation resources,P2G systems,storage facilities,electric vehicles and demand-side management is presented.The 33-bus distribution network is intended to analyse the proposed model.The results of different scenarios show the efficiency of the proposed model.Several key points are deduced from the obtained results:(i)demand-side management is able to reduce the peak load of the network,(ii)the presence of renewable resources and batteries can cause the network to convert excess electricity into gas and sell it to the gas network in the market and(iii)distributed generation can reduce the purchase of energy from the upstream network and cause a 36% reduction in the cost function.
文摘In conjunction with the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA),the Department of Electrical and Computer Engineering at the University of Massachusetts Amherst invites applications for a tenure-track position in Integrative Systems Engineering(ISE) at the Assistant Professor level to begin September 2009.