The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are ...The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are the major difficulties for complex product collaborative design and simulation. Since the traditional Run-Time Infrastructure (RTI) is not good at supporting these new requirements, an extended high level architecture (HLA) multilayer federation integration architecture (MLFIA), based on the resource management federation (RMF) and its supporting environment based Service-oriented architecture (SOA) and HLA (SOHLA) are proposed, The idea and realization of two key technologies, the dynamic creation of simulation federation based on RMF, TH RTI, an extensible HLA runtime infrastructure (RTI), used at Internet are emphasized. Finally, an industry case about multiple unit (MU) is given.展开更多
The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, S...The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.展开更多
To collect and share information of projects or products and make it consistent and correct so that the quality and costs of projects can be effectively controlled,an integrative project architecture integrating diffe...To collect and share information of projects or products and make it consistent and correct so that the quality and costs of projects can be effectively controlled,an integrative project architecture integrating different types of breakdown structures is necessary.In this paper,the international research status on work breakdown structure(WBS)was analyzed,and an integrative project architecture for commercial aero-engines was designed,where product breakdown structure(PBS),WBS,organization breakdown structure(OBS)and cost breakdown structure(CBS)were integrated and built.And the architecture was applied in information systems.A transfer from technological views of complex products through their lifecycles to management views has been realized with this standardized architecture,thus development tasks and costs can be controlled.展开更多
A runtime reconfigurable very-large-scale integration (VLSI) architecture for image and video scaling by arbitrary factors with good antialiasing performance is presented in this paper. Video scal- ing is used in a ...A runtime reconfigurable very-large-scale integration (VLSI) architecture for image and video scaling by arbitrary factors with good antialiasing performance is presented in this paper. Video scal- ing is used in a wide range of applications from broadcast, medical imaging and high-resolution video effects to video surveillance, and video conferencing. Many algorithms have been proposed for these applications, such as piecewise polynomial kernels and windowed sinc kernels. The sum of three shifted versions of a B-spline function, whose weights can be adjusted for different applications, is adopted as the main filter. The proposed algorithm is confirmed to be effective on image scaling ap- plications and also verified by many widely acknowledged image quality measures. The reconfigu- rable hardware architecture constitutes an arbitrary scaler with low resource consumption and high performance targeted for field programmable gate array (FPGA) devices. The scaling factor can be changed on-the-fly, and the filter can also be changed during runtime within a unifying framework.展开更多
Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r ...Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".展开更多
In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and d...In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and develop web-based GIS systems based on SOA-SDI, allowing client applications to pull in, analyze and present spatial data from those available spatial data sources. The proposed architecture logically includes 4 layers or components; they are layer of multiple data provider services, layer of data in-tegration, layer of backend services, and front-end graphical user interface (GUI) for spatial data presentation. On the basis of the 4-layered SOA-SDI framework, WebGIS applications can be quickly deployed, which proves that SOA-SDI has the potential to reduce the input of software development and shorten the development period.展开更多
With the continuous advancement of economic globalization,energy demand is expanding and energy consumption is excessive,which leads to energy shortage.Unreasonable energy use also brings great challenges to the envir...With the continuous advancement of economic globalization,energy demand is expanding and energy consumption is excessive,which leads to energy shortage.Unreasonable energy use also brings great challenges to the environment and affects the balance of the ecosystem seriously.The rise of the third industrial revolution has injected new vitality into energy system.The construction of energy Internet system,which integrates Internet technology and energy technology,has become a new energy system of sustainable development.It has put forward the reform scheme for the mismatch of energy demand points and environmental pollution.The deepening of sustainable development strategy accelerates the promotion of energy Internet system,promotes the large-scale utilization and sharing of renewable energy.It also provides a new idea for realizing green energy structure and efficient energy utilization.Firstly,based on the core concept of energy Internet system,this paper reviews the relevant research on energy Internet system in academic and industrial circles,and gives the preliminary definition of energy Internet system market.On this basis,it puts forward the development goal of energy Internet system market.It compares the new energy Internet system market with the traditional single energy market,highlighting the characteristics of energy Internet system market,it is reflected in the diversified transformation of market trading subjects,the diversification of market trading objects,the increasing dependence of information technology and the improvement of the matching degree of supply and demand.Then,the integrated architecture of of the energy Internet system market is carried out,and the issues related to the transaction mode and operation mechanism of the energy Internet system market are discussed.Finally,the frontier problems of energy Internet system market are summarized,and the research prospect of energy Internet system market is put forward.展开更多
The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an...The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an important issue in business architecture integration. Currently used methodologies for business component identification tend to focus on software-level business components, and ignore such enterprise concerns in business architectures as organizations and resources. Moreover, approaches to enterprise-level business component identi- fication have proven laborious. In this study, we propose a novel approach to enterprise-level business component identification by considering overall cohesion, coupling, granularity, maintainability, and reusability. We first define and formulate enterprise-level business components based on the component business model and the Department of Defense Architecture Framework (DoDAF) models. To quantify the indices of business components, we formulate a create, read, update, and delete (CRUD) matrix and use six metrics as criteria. We then formulate business com- ponent identification as a multi:objective optimization problem and solve it by a novel meta-heuristic optimization algorithm called the 'simulated annealing hybrid genetic algorithm (SHGA)'. Case studies showed that our approach is more practical and efficient for enterprise-level business component identification than prevalent approaches.展开更多
This paper formulates an architecture for information integration in computer integrated manufacturing systems (CIMS). The architecture takes the frame structure as single link among applica- tions and between applica...This paper formulates an architecture for information integration in computer integrated manufacturing systems (CIMS). The architecture takes the frame structure as single link among applica- tions and between applications and physical storage. All the advantages in form features based inte- grated systems can be found in the frame-based architecture as the frame structure here takes form fea- tures as its primitives. But other advantages, e.g., default knowledge and dynamic domain knowledge can be attached to frames and the frame structure is easy to be changed and extended, which cannot be found in form features based systems, can also be showed in frame based architecture as the frame structure is a typical knowledge representation scheme in artificial intelligence and many researches and interests have put on it.展开更多
The rapid development in the digital circuit design enhances the applications on very large scale integration era. Encoders are one among the digital circuits found in all communication systems. The polar encoding is ...The rapid development in the digital circuit design enhances the applications on very large scale integration era. Encoders are one among the digital circuits found in all communication systems. The polar encoding is mainly meant for its channel achieving property. It finds its application in communications, sensing and information theory. This coding proposed by Erdal Arikan is significant because of its zero error floors and simple architecture for hardware implementation. In this paper, a folded polar encoder is designed to start from the fully parallel architecture and proceeds with its data flow graph, delay requirement calculation, lifetime analysis and register allocation, which results in a very large scale integration architecture with minimum hardware utilization. The results are simulated for 4 and 8 parallel folded 32-bit polar encoder using Xilinx 14.6 ISIM and implemented in Virtex 5 field programmable gate array. A comparison is made on fully parallel and various folding techniques based on their resource utilization.展开更多
Developing hierarchical and nanoscale ZSM-5 catalysts for diffusion-limited reactions has received ever-increasing attention. Here, ZSM-5 architecture integrated with hierarchical pores and nanoscale crystals was succ...Developing hierarchical and nanoscale ZSM-5 catalysts for diffusion-limited reactions has received ever-increasing attention. Here, ZSM-5 architecture integrated with hierarchical pores and nanoscale crystals was successfully prepared via in situ self-assembly of nanoparticles-coated silicalite-1. First, the oriented attachment of amorphous nanoparticles on external surface of silicalite-1 was achieved by controlling the alkalinity of Si-Al coating solution. The partial exposure of the external surface of silicalite-1 ensured the uniform removal of silicon in the bulk phase for the creation of hierarchical pores during the subsequent desilication-recrystallization. The uniform removal of silicon species in the bulk phase was mainly due to the synergistic effect of surface protection and alkaline etching, which could be balanced by regulating the relative amount of tetrapropylammonium cation and OH– in desilication-recrystallization solution. Importantly, the removed silicon from silicalite-1 recrystallized and in situ assembled into final ZSM-5 nanocrystals induced by surface Si-Al nanoparticles. The hierarchical pores and nanoscale crystals on this integrated architecture not only promoted the removal of coke precursors from micropores but also provided large external specific surface (91 m^(2)·g^(-1)) for coke deposition. Consequently, a much longer catalytic lifetime was achieved for methanol-to-aromatics reaction compared to conventional hollow structure ZSM-5 (84 h vs 46 h), with relatively high stability.展开更多
Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack in...Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack integrating pore architectural features in a scaffold,hindering optimization of architectural parameters(geometry,size and curvature)to improve vascularization and consequently clinical outcomes.To address this challenge,we have developed an integrating design strategy to fabricate different pore architectures(cube,gyroid and hexagon)with different pore dimensions(-350,500 and 650 lm)in the silicate-based bioceramic scaffolds via digital light processing technique.The sintered scaffolds maintained high-fidelity pore architectures similar to the printing model.The hexagon-and gyroid-pore scaffolds exhibited the highest and lowest compressive strength(from 15 to 55MPa),respectively,but the cube-pore scaffolds showed appreciable elastic modulus.Moreover,the gyroid-pore architecture contributed on a faster ion dissolution and mass decay in vitro.It is interesting that bothμCT and histological analyses indicate vascularization efficiency was challenged even in the 650-μm pore region of hexagon-pore scaffolds within 2weeks in rabbit models,but the gyroid-pore constructs indicated appreciable blood vessel networks even in the 350-μm pore region at 2weeks and high-density blood vessels were uniformly invaded in the 500-and 650-μm pore at 4weeks.Angiogenesis was facilitated in the cube-pore scaffolds in comparison with the hexagon-pore ones within 4weeks.These studies demonstrate that the continuous pore wall curvature feature in gyroid-pore architecture is an important implication for biodegradation,vascular cell migration and vessel ingrowth in porous bioceramic scaffolds.展开更多
Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power...Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power system are analyzed and integrated railway smart grid architecture based on energy routers is proposed.Importantly,three corresponding resilient mode control methods are suggested for the proposed architecture.In the fourth section,a simulation model corresponding to the resilient control mode is built and the simulation results prove the feasibility of the proposed control mode.Equally,for the novel network-connected backbone router(NCBR),a 1000 kVA,27.5/10 kV NCBR engineering prototype is used to prove its effectiveness in practical applications.Finally,a differentiation analysis is given,followed by conclusions regarding the traditional power system and proposed system.展开更多
The emerging integrated CPU-GPU architectures facilitate short computational kernels to utilize GPU acceleration. Evidence has shown that, on such systems, the GPU control responsiveness (how soon the host program fi...The emerging integrated CPU-GPU architectures facilitate short computational kernels to utilize GPU acceleration. Evidence has shown that, on such systems, the GPU control responsiveness (how soon the host program finds out about the completion of a GPU kernel) is essential for the overall performance. This study identifies the GPU responsiveness dilemma: host busy polling responds quickly, but at the expense of high energy consumption and interference with co-running CPU programs; interrupt-based notification minimizes energy and CPU interference costs, but suffers from substantial response delay. We present a programlevel solution that wakes up the host program in anticipation of GPU kernel completion. We systematically explore the design space of an anticipatory wakeup scheme through a timerdelayed wakeup or kernel splitting-based pre-completion notification. Experiments show that our proposed technique can achieve the best of both worlds, high responsiveness with low power and CPU costs, for a wide range of GPU workloads.展开更多
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160).
文摘The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are the major difficulties for complex product collaborative design and simulation. Since the traditional Run-Time Infrastructure (RTI) is not good at supporting these new requirements, an extended high level architecture (HLA) multilayer federation integration architecture (MLFIA), based on the resource management federation (RMF) and its supporting environment based Service-oriented architecture (SOA) and HLA (SOHLA) are proposed, The idea and realization of two key technologies, the dynamic creation of simulation federation based on RMF, TH RTI, an extensible HLA runtime infrastructure (RTI), used at Internet are emphasized. Finally, an industry case about multiple unit (MU) is given.
基金funded by Tsinghua University-China Mobile Communications Group Co., Ltd. Joint Institute。
文摘The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.
文摘To collect and share information of projects or products and make it consistent and correct so that the quality and costs of projects can be effectively controlled,an integrative project architecture integrating different types of breakdown structures is necessary.In this paper,the international research status on work breakdown structure(WBS)was analyzed,and an integrative project architecture for commercial aero-engines was designed,where product breakdown structure(PBS),WBS,organization breakdown structure(OBS)and cost breakdown structure(CBS)were integrated and built.And the architecture was applied in information systems.A transfer from technological views of complex products through their lifecycles to management views has been realized with this standardized architecture,thus development tasks and costs can be controlled.
基金Supported by the National Natural Science Foundation of China(No.60972126)the Joint Funds of the National Natural Science Foundation of China(No.U0935002/L05)+1 种基金the Beijing Municipal Natural Science Foundation(No.4102060)the State Key Program of the National Natural Science of China(No.61032007)
文摘A runtime reconfigurable very-large-scale integration (VLSI) architecture for image and video scaling by arbitrary factors with good antialiasing performance is presented in this paper. Video scal- ing is used in a wide range of applications from broadcast, medical imaging and high-resolution video effects to video surveillance, and video conferencing. Many algorithms have been proposed for these applications, such as piecewise polynomial kernels and windowed sinc kernels. The sum of three shifted versions of a B-spline function, whose weights can be adjusted for different applications, is adopted as the main filter. The proposed algorithm is confirmed to be effective on image scaling ap- plications and also verified by many widely acknowledged image quality measures. The reconfigu- rable hardware architecture constitutes an arbitrary scaler with low resource consumption and high performance targeted for field programmable gate array (FPGA) devices. The scaling factor can be changed on-the-fly, and the filter can also be changed during runtime within a unifying framework.
文摘Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".
基金Supported by the Research Fund of Key GIS Lab of the Education Ministry (No. 200610)
文摘In this paper we propose a service-oriented architecture for spatial data integration (SOA-SDI) in the context of a large number of available spatial data sources that are physically sitting at different places, and develop web-based GIS systems based on SOA-SDI, allowing client applications to pull in, analyze and present spatial data from those available spatial data sources. The proposed architecture logically includes 4 layers or components; they are layer of multiple data provider services, layer of data in-tegration, layer of backend services, and front-end graphical user interface (GUI) for spatial data presentation. On the basis of the 4-layered SOA-SDI framework, WebGIS applications can be quickly deployed, which proves that SOA-SDI has the potential to reduce the input of software development and shorten the development period.
文摘With the continuous advancement of economic globalization,energy demand is expanding and energy consumption is excessive,which leads to energy shortage.Unreasonable energy use also brings great challenges to the environment and affects the balance of the ecosystem seriously.The rise of the third industrial revolution has injected new vitality into energy system.The construction of energy Internet system,which integrates Internet technology and energy technology,has become a new energy system of sustainable development.It has put forward the reform scheme for the mismatch of energy demand points and environmental pollution.The deepening of sustainable development strategy accelerates the promotion of energy Internet system,promotes the large-scale utilization and sharing of renewable energy.It also provides a new idea for realizing green energy structure and efficient energy utilization.Firstly,based on the core concept of energy Internet system,this paper reviews the relevant research on energy Internet system in academic and industrial circles,and gives the preliminary definition of energy Internet system market.On this basis,it puts forward the development goal of energy Internet system market.It compares the new energy Internet system market with the traditional single energy market,highlighting the characteristics of energy Internet system market,it is reflected in the diversified transformation of market trading subjects,the diversification of market trading objects,the increasing dependence of information technology and the improvement of the matching degree of supply and demand.Then,the integrated architecture of of the energy Internet system market is carried out,and the issues related to the transaction mode and operation mechanism of the energy Internet system market are discussed.Finally,the frontier problems of energy Internet system market are summarized,and the research prospect of energy Internet system market is put forward.
基金Project supported by the National.Natural Science Foundation of China (No. 71571189)
文摘The component-based business architecture integration of military information systems is a popu- lar research topic in the field of military operational research. Identifying enterprise-level business components is an important issue in business architecture integration. Currently used methodologies for business component identification tend to focus on software-level business components, and ignore such enterprise concerns in business architectures as organizations and resources. Moreover, approaches to enterprise-level business component identi- fication have proven laborious. In this study, we propose a novel approach to enterprise-level business component identification by considering overall cohesion, coupling, granularity, maintainability, and reusability. We first define and formulate enterprise-level business components based on the component business model and the Department of Defense Architecture Framework (DoDAF) models. To quantify the indices of business components, we formulate a create, read, update, and delete (CRUD) matrix and use six metrics as criteria. We then formulate business com- ponent identification as a multi:objective optimization problem and solve it by a novel meta-heuristic optimization algorithm called the 'simulated annealing hybrid genetic algorithm (SHGA)'. Case studies showed that our approach is more practical and efficient for enterprise-level business component identification than prevalent approaches.
文摘This paper formulates an architecture for information integration in computer integrated manufacturing systems (CIMS). The architecture takes the frame structure as single link among applica- tions and between applications and physical storage. All the advantages in form features based inte- grated systems can be found in the frame-based architecture as the frame structure here takes form fea- tures as its primitives. But other advantages, e.g., default knowledge and dynamic domain knowledge can be attached to frames and the frame structure is easy to be changed and extended, which cannot be found in form features based systems, can also be showed in frame based architecture as the frame structure is a typical knowledge representation scheme in artificial intelligence and many researches and interests have put on it.
文摘The rapid development in the digital circuit design enhances the applications on very large scale integration era. Encoders are one among the digital circuits found in all communication systems. The polar encoding is mainly meant for its channel achieving property. It finds its application in communications, sensing and information theory. This coding proposed by Erdal Arikan is significant because of its zero error floors and simple architecture for hardware implementation. In this paper, a folded polar encoder is designed to start from the fully parallel architecture and proceeds with its data flow graph, delay requirement calculation, lifetime analysis and register allocation, which results in a very large scale integration architecture with minimum hardware utilization. The results are simulated for 4 and 8 parallel folded 32-bit polar encoder using Xilinx 14.6 ISIM and implemented in Virtex 5 field programmable gate array. A comparison is made on fully parallel and various folding techniques based on their resource utilization.
基金financial support from the National Natural Science Foundation of China(Nos.22278292,21978191).
文摘Developing hierarchical and nanoscale ZSM-5 catalysts for diffusion-limited reactions has received ever-increasing attention. Here, ZSM-5 architecture integrated with hierarchical pores and nanoscale crystals was successfully prepared via in situ self-assembly of nanoparticles-coated silicalite-1. First, the oriented attachment of amorphous nanoparticles on external surface of silicalite-1 was achieved by controlling the alkalinity of Si-Al coating solution. The partial exposure of the external surface of silicalite-1 ensured the uniform removal of silicon in the bulk phase for the creation of hierarchical pores during the subsequent desilication-recrystallization. The uniform removal of silicon species in the bulk phase was mainly due to the synergistic effect of surface protection and alkaline etching, which could be balanced by regulating the relative amount of tetrapropylammonium cation and OH– in desilication-recrystallization solution. Importantly, the removed silicon from silicalite-1 recrystallized and in situ assembled into final ZSM-5 nanocrystals induced by surface Si-Al nanoparticles. The hierarchical pores and nanoscale crystals on this integrated architecture not only promoted the removal of coke precursors from micropores but also provided large external specific surface (91 m^(2)·g^(-1)) for coke deposition. Consequently, a much longer catalytic lifetime was achieved for methanol-to-aromatics reaction compared to conventional hollow structure ZSM-5 (84 h vs 46 h), with relatively high stability.
基金financial support from the National Key Research and Development Program of China(2017YFE0117700)the National Natural Science Foundation of China(81871775,81902225,81772311)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LBY21H060001,LGF21H060002,Z22E029971)the Medical and Health Research Project of Zhejiang Province(2020KY929,2020RC115).
文摘Pore architecture in bioceramic scaffolds plays an important role in facilitating vascularization efficiency during bone repair or orbital reconstruction.Many investigations have explored this relationship but lack integrating pore architectural features in a scaffold,hindering optimization of architectural parameters(geometry,size and curvature)to improve vascularization and consequently clinical outcomes.To address this challenge,we have developed an integrating design strategy to fabricate different pore architectures(cube,gyroid and hexagon)with different pore dimensions(-350,500 and 650 lm)in the silicate-based bioceramic scaffolds via digital light processing technique.The sintered scaffolds maintained high-fidelity pore architectures similar to the printing model.The hexagon-and gyroid-pore scaffolds exhibited the highest and lowest compressive strength(from 15 to 55MPa),respectively,but the cube-pore scaffolds showed appreciable elastic modulus.Moreover,the gyroid-pore architecture contributed on a faster ion dissolution and mass decay in vitro.It is interesting that bothμCT and histological analyses indicate vascularization efficiency was challenged even in the 650-μm pore region of hexagon-pore scaffolds within 2weeks in rabbit models,but the gyroid-pore constructs indicated appreciable blood vessel networks even in the 350-μm pore region at 2weeks and high-density blood vessels were uniformly invaded in the 500-and 650-μm pore at 4weeks.Angiogenesis was facilitated in the cube-pore scaffolds in comparison with the hexagon-pore ones within 4weeks.These studies demonstrate that the continuous pore wall curvature feature in gyroid-pore architecture is an important implication for biodegradation,vascular cell migration and vessel ingrowth in porous bioceramic scaffolds.
基金Supported by the Zhuhai City Industry-University-Research Project(ZH22017001200019PWC).
文摘Railway power system is an inseparable part of the power system,therefore,the intelligent architecture of the railway power system should also be focused on.The unique power supply characteristics of the railway power system are analyzed and integrated railway smart grid architecture based on energy routers is proposed.Importantly,three corresponding resilient mode control methods are suggested for the proposed architecture.In the fourth section,a simulation model corresponding to the resilient control mode is built and the simulation results prove the feasibility of the proposed control mode.Equally,for the novel network-connected backbone router(NCBR),a 1000 kVA,27.5/10 kV NCBR engineering prototype is used to prove its effectiveness in practical applications.Finally,a differentiation analysis is given,followed by conclusions regarding the traditional power system and proposed system.
基金We thank the constructive comments from the anonymous referees. This material is based upon work supported by DOE Early Career Award (DE-SC0013700), the National Science Foundation (NSF) (1455404, 1455733 (CAREER), 1525609, 1464216, and 1618912). This work is also supported partly by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61272143, 61272144, 61472431), and National Science and Technology Major Project (NSTMP) (2017ZX01028-101 ). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DOE, NSF, NSFC or NSTMP.
文摘The emerging integrated CPU-GPU architectures facilitate short computational kernels to utilize GPU acceleration. Evidence has shown that, on such systems, the GPU control responsiveness (how soon the host program finds out about the completion of a GPU kernel) is essential for the overall performance. This study identifies the GPU responsiveness dilemma: host busy polling responds quickly, but at the expense of high energy consumption and interference with co-running CPU programs; interrupt-based notification minimizes energy and CPU interference costs, but suffers from substantial response delay. We present a programlevel solution that wakes up the host program in anticipation of GPU kernel completion. We systematically explore the design space of an anticipatory wakeup scheme through a timerdelayed wakeup or kernel splitting-based pre-completion notification. Experiments show that our proposed technique can achieve the best of both worlds, high responsiveness with low power and CPU costs, for a wide range of GPU workloads.