This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology la...This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology lab in Huazhong University of Science and Technology (HUST) for a test bed of studying of deep ocean manipulation technologies. The manipulator features modular integration joints, and layered architecture control system. The oil-filled, pressure-compensated joint is compactly designed and integrated of a permanent magnet (PM) brushless motor, a drive circuit, a harmonic gear and an angular feedback potentiometer. The underwater control system is based on a network and consisted of three embedded PC/104 computers which are used for servo control, task plan and target sensor respectively. They communicate through User Datagram Protocol (UDP) multicast communication in Vxworks OS. A supervisor PC with a virtual 3D GUI is fiber linked to underwater control system. Furthermore, the manipulator is equipped with a sensor system including a unique ultra-sonic probe array and an underwater camera. Autonomous grasp strategy based multi-sensor is studied. The results of watertight test in 40 MPa, joint's efficiency test and autonomous grasp experiments in tank are also presented.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Gua...On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Guangdong province,had been kicked off comprehensively.This project is located in the new district of the East Sea Island inside the Zhanjiang Economic Development展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No. 2006AA09Z203)State Commission of Science and Technology for National Defense Industry Project "micro underwater work tool"the National Natural Science Foundation of China(Grant Nos.50909046 and 51079061)
文摘This paper describes an underwater 3500 m electric manipulator (named Huahai-4E, stands for four functions deep ocean electric manipulator in China), which has been developed at underwater manipulation technology lab in Huazhong University of Science and Technology (HUST) for a test bed of studying of deep ocean manipulation technologies. The manipulator features modular integration joints, and layered architecture control system. The oil-filled, pressure-compensated joint is compactly designed and integrated of a permanent magnet (PM) brushless motor, a drive circuit, a harmonic gear and an angular feedback potentiometer. The underwater control system is based on a network and consisted of three embedded PC/104 computers which are used for servo control, task plan and target sensor respectively. They communicate through User Datagram Protocol (UDP) multicast communication in Vxworks OS. A supervisor PC with a virtual 3D GUI is fiber linked to underwater control system. Furthermore, the manipulator is equipped with a sensor system including a unique ultra-sonic probe array and an underwater camera. Autonomous grasp strategy based multi-sensor is studied. The results of watertight test in 40 MPa, joint's efficiency test and autonomous grasp experiments in tank are also presented.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
文摘On December 20,2016 the construction of the SinoKuwait Guangdong integrated refining/chemical join venture project,which is the largest Sinopec’s projec under construction and also the key construction project of Guangdong province,had been kicked off comprehensively.This project is located in the new district of the East Sea Island inside the Zhanjiang Economic Development