Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,th...Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.展开更多
A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in p...A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.展开更多
This paper explains why as a manager employing recent Chinese University graduates cannot manage them using traditional management styles. Management is very similar to a negotiation. The manager must change their "n...This paper explains why as a manager employing recent Chinese University graduates cannot manage them using traditional management styles. Management is very similar to a negotiation. The manager must change their "negotiation style" to manage their Chinese graduates into a valuable addition to their enterprise.展开更多
In this paper we formulate a continuous-time behavioral (4 la cumulative prospect theory) portfolio selection model where the losses are constrained by a pre-specified upper bound. Economically the model is motivate...In this paper we formulate a continuous-time behavioral (4 la cumulative prospect theory) portfolio selection model where the losses are constrained by a pre-specified upper bound. Economically the model is motivated by the previously proved fact that the losses Occurring in a bad state of the world can be catastrophic for an unconstrained model. Mathematically solving the model boils down to solving a concave Choquet minimization problem with an additional upper bound. We derive the optimal solution explicitly for such a loss control model. The optimal terminal wealth profile is in general characterized by three pieces: the agent has gains in the good states of the world, gets a moderate, endogenously constant loss in the intermediate states, and suffers the maximal loss (which is the given bound for losses) in the bad states. Examples are given to illustrate the general results.展开更多
Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the sig...Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the signal, but also affect the performance of quantum operations. In this work, we divide losses into unbalanced linear losses and shared common losses, and provide a detailed analysis on how loss affects the integrated linear optical quantum gates. It is found that the orthogonality of eigenmodes and the unitary phase relation of the coupled waveguide modes are destroyed by the loss. As a result, the fidelity of single-and two-qubit operations decreases significantly as the shared loss becomes comparable to the coupling strength. Our results are important for the investigation of large-scale photonic integrated quantum information processes.展开更多
In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine...In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine duct(ITD).In the current paper,five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft,and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement.However,their bulky geometric size represents a more effective obstacle to flow from high pressure(HP) turbine rotor.These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD,and hence cause higher loss.Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades.According to the computational results,three main conclusions are finally obtained.Firstly,a noticeable low speed area is formed near the strut's leading edge,which is no doubt caused by the potential flow effects.Secondly,more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge.Such boundary layer migration is obvious,especially close to the shroud domain.Meanwhile,radial pressure gradient aggravates this phenomenon.Thirdly,velocity distribution along the strut's pressure side on nozzle's suction surface differs,which means loading variation of the nozzle.And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.展开更多
As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the m...As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator(FlexRay) and Tachyon SMO(Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.展开更多
基金supported by the following research fundings including:the National Natural Science Foundation of China(Nos.62005114,62204078 and U22A2072)Natural Science Foundation of Henan-Excellent Youth Scholar(No.232300421092)Open Fund of the State Key Laboratory of Integrated Optoelectronics+(IOSKL2020KF01).
文摘Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.
基金CSIR-IMTECH laboratory for providing the technical support in biocompatibility testing。
文摘A novel PCL/HA/TiO_(2)hybrid coating on ZM21 Mg alloy substrate has been investigated for corrosion resistance, biocompatibility and mechanical integrity loss in terms of bending, compressive and tensile strength in physiological media. The prepared hybrid coating was dip coated over ZM21 from HA/TiO_(2)and PCL solutions followed by creating a microporous PCL layer by utilizing Non-solvent Induced Phase Separation(NIPS) technique. The electrochemical measurement and in-vitro degradation study in SBF after 28 days showed that the PCL/HA/TiO_(2) hybrid coating reduced H2 evolution rate, weight loss, and corrosion rate by 64, 116 and 118 times respectively, as compared to uncoated ZM21 samples. The surface studies carried out using SEM-EDX, FTIR and XRD revealed formation of highly stable 3d flower-like HA crystals with Ca/P ratio of 1.60 in the PCL micropores. This dense apatite growth effectively protected the PCL/HA/TiO_(2)hybrid coated samples to maintain the good mechanical integrity even after 28 days of immersion as compared to HA/TiO_(2)composite coated, As-polished(A/P) and As-machined(A/M) samples. The failure analysis of samples under mechanical loading were performed using SEM-BSE-EBSD.The in-vitro cellular viability of L929 fibroblast cells on PCL/HA/TiO_(2)hybrid coating was found 50.47% higher with respect to control group,whereas bacterial viability was supressed by 57.15 and 62.35% against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial models. The comprehensive assessment indicates PCL/HA/TiO_(2)hybrid coating as a suitable candidate to delay early degradation and mechanical integrity loss of Mg-based alloys for devising biodegradable orthopaedic implant.
文摘This paper explains why as a manager employing recent Chinese University graduates cannot manage them using traditional management styles. Management is very similar to a negotiation. The manager must change their "negotiation style" to manage their Chinese graduates into a valuable addition to their enterprise.
文摘In this paper we formulate a continuous-time behavioral (4 la cumulative prospect theory) portfolio selection model where the losses are constrained by a pre-specified upper bound. Economically the model is motivated by the previously proved fact that the losses Occurring in a bad state of the world can be catastrophic for an unconstrained model. Mathematically solving the model boils down to solving a concave Choquet minimization problem with an additional upper bound. We derive the optimal solution explicitly for such a loss control model. The optimal terminal wealth profile is in general characterized by three pieces: the agent has gains in the good states of the world, gets a moderate, endogenously constant loss in the intermediate states, and suffers the maximal loss (which is the given bound for losses) in the bad states. Examples are given to illustrate the general results.
基金supported by the National Natural Science Foundation of China(Nos.11374289,61590932,and 61505195)the National Key R&D Program(Nos.2016YFA0301700 and 2016YFA0301300)+2 种基金the Innovation Funds from the Chinese Academy of Sciences(No.60921091)the Fundamental Research Funds for the Central Universitiesthe Open Fund of the State Key Laboratory on Integrated Optoelectronics(IOSKL2015KF12)
文摘Loss is inevitable for the optical system due to the absorption of materials, scattering caused by the defects, and surface roughness. In quantum optical circuits, the loss can not only reduce the intensity of the signal, but also affect the performance of quantum operations. In this work, we divide losses into unbalanced linear losses and shared common losses, and provide a detailed analysis on how loss affects the integrated linear optical quantum gates. It is found that the orthogonality of eigenmodes and the unitary phase relation of the coupled waveguide modes are destroyed by the loss. As a result, the fidelity of single-and two-qubit operations decreases significantly as the shared loss becomes comparable to the coupling strength. Our results are important for the investigation of large-scale photonic integrated quantum information processes.
基金supported by grants from the National Natural Science Foundation of China(No.51306177)
文摘In order to shorten aero-engine axial length,substituting the traditional long chord thick strut design accompanied with the traditional low pressure(LP) stage nozzle,LP turbine is integrated with intermediate turbine duct(ITD).In the current paper,five vanes of the first stage LP turbine nozzle is replaced with loaded struts for supporting the engine shaft,and providing oil pipes circumferentially which fulfilled the areo-engine structure requirement.However,their bulky geometric size represents a more effective obstacle to flow from high pressure(HP) turbine rotor.These five struts give obvious influence for not only the LP turbine nozzle but also the flowfield within the ITD,and hence cause higher loss.Numerical investigation has been undertaken to observe the influence of the Nozzle-Strut integrated design concept on the flowfield within the ITD and the nearby nozzle blades.According to the computational results,three main conclusions are finally obtained.Firstly,a noticeable low speed area is formed near the strut's leading edge,which is no doubt caused by the potential flow effects.Secondly,more severe radial migration of boundary layer flow adjacent to the strut's pressure side have been found near the nozzle's trailing edge.Such boundary layer migration is obvious,especially close to the shroud domain.Meanwhile,radial pressure gradient aggravates this phenomenon.Thirdly,velocity distribution along the strut's pressure side on nozzle's suction surface differs,which means loading variation of the nozzle.And it will no doubt cause nonuniform flowfield faced by the downstream rotor blade.
文摘As technology node shrinks, aggressive design rules for contact and other back end of line(BEOL)layers continue to drive the need for more effective full chip patterning optimization. Resist top loss is one of the major challenges for 28 nm and below technology nodes, which can lead to post-etch hotspots that are difficult to predict and eventually degrade the process window significantly. To tackle this problem, we used an advanced programmable illuminator(FlexRay) and Tachyon SMO(Source Mask Optimization) platform to make resistaware source optimization possible, and it is proved to greatly improve the imaging contrast, enhance focus and exposure latitude, and minimize resist top loss thus improving the yield.