In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science an...In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.展开更多
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being...BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being applied,but research methodological problems are arising due to unsystematic protocols.This study aims to present the optimal intervention protocol by presenting scientific standards for sensory integration intervention through meta-analysis.AIM To prove the effectiveness of sensory integration therapy,examine the latest trend of sensory integration studies in Korea,and provide clinical evidence for sensory integration therapies.METHODS The database of Korean search engines,including RISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studiesRISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studies.RESULTS Sensory integration intervention has been proven effective in children with cerebral palsy,autism spectrum disorder,attention deficit/hyperactivity disorder,developmental disorder,and intellectual disability in relation to the diagnosis of children.Regarding sensory integration therapies,1:1 individual treatment with a therapist or a therapy session lasting for 40 min was most effective.In terms of dependent variables,sensory integration therapy effectively promoted social skills,adaptive behavior,sensory processing,and gross motor and fine motor skills.CONCLUSION The results of this study may be used as therapeutic evidence for sensory integration intervention in the clinical field of occupational therapy for children,and can help to present standards for sensory integration intervention protocols.展开更多
With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation pract...With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.展开更多
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio...Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.展开更多
Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM a...Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM and WM has a long history in China,and has made important achievements in the process of clinical diagnosis and treatment.However,the methodological defects in currently published clinical practice guidelines(CPGs)limit its development.The organic integration of TCM and WM is a deeper integration of TCM and WM.To realize the progression of"integration"to"organic integration",a targeted and standardized guideline development methodology is needed.Therefore,the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.展开更多
Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induc...Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.展开更多
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we...Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.展开更多
The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(...The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.展开更多
We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on ...We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).展开更多
This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl...This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, ...It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, and Joe Goodman were reluctant to divulge information about the source of their knowledge, or their professional qualifications. Others, such as John Shen and Hong Yuan-bain were early 20th century immigrants who transmitted highly personalized versions of acupuncture and Chinese medicine to select disciples. Eventually, a new class of scholars appeared, including names such as Ted Kaptchuk, Peter Deadman, Nigel Wiseman, William Morris, Peter Eckman, John Mc Donald, Charles Buck, and the late Giovanni Maciocia who looked for answers back in China, developed translation methodologies and terminology, compiled the main textbooks currently in use at TCM colleges, overcame enormous scholastic adversity, developed courses and pursued the regulation and accreditation of TCM in various countries. This special issue synopsizes the path towards the global acculturation of TCM over the last 50 years, the main protagonists, the enormous accomplishments they have achieved for the profession, their philosophy, their clinical perspectives and visions for the future.展开更多
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model...Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ...In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.展开更多
The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two ...The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.展开更多
This paper examined the relationship between cultural consumption and the floating population’s integration into host cities based on data from China’s Seventh National Population Census and the 2018 China Migrants ...This paper examined the relationship between cultural consumption and the floating population’s integration into host cities based on data from China’s Seventh National Population Census and the 2018 China Migrants Dynamic Survey(CMDS).The findings indicate that improving the floating population’s consumption level and quality,especially the quality of development-oriented cultural consumption,can significantly improve the level of their integration.Moreover,development-oriented cultural consumption has a positive effect on the floating population’s integration and social participation,while entertainment-oriented cultural consumption facilitates their integration mainly by improving their sense of well-being.These findings could guide policymakers in developing targeted cultural consumption policies,implementing specific regional industry adjustments,and expanding domestic consumption demand.展开更多
文摘In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
文摘BACKGROUND Sensory integration intervention is highly related to the child's effective interaction with the environment and the child's development.Currently,various sensory integration interventions are being applied,but research methodological problems are arising due to unsystematic protocols.This study aims to present the optimal intervention protocol by presenting scientific standards for sensory integration intervention through meta-analysis.AIM To prove the effectiveness of sensory integration therapy,examine the latest trend of sensory integration studies in Korea,and provide clinical evidence for sensory integration therapies.METHODS The database of Korean search engines,including RISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studiesRISS,KISS,and DBpia,was used to search for related literature published from 2001 to October 2020.The keywords,“Children”,“Sensory integration”,“Integrated sensory”,“Sensorymotor”,and“Sensory stimulation”were used in this search.Then,a meta-analysis was conducted on 24 selected studies.RESULTS Sensory integration intervention has been proven effective in children with cerebral palsy,autism spectrum disorder,attention deficit/hyperactivity disorder,developmental disorder,and intellectual disability in relation to the diagnosis of children.Regarding sensory integration therapies,1:1 individual treatment with a therapist or a therapy session lasting for 40 min was most effective.In terms of dependent variables,sensory integration therapy effectively promoted social skills,adaptive behavior,sensory processing,and gross motor and fine motor skills.CONCLUSION The results of this study may be used as therapeutic evidence for sensory integration intervention in the clinical field of occupational therapy for children,and can help to present standards for sensory integration intervention protocols.
基金Jiangsu Province Vocational Education Teaching Reform Research Project“Construction and Application of Digital Teaching Factory Under the Background of Integration of Production and Education-A Case Study of Chemical Engineering Majors in Vocational Colleges”(ZYB141)Center for Scientific Research and Development in Higher Education Institutes,Ministry of Education 2022“Virtual Simulation Technology in Vocational Education and Teaching Innovation Application”Special Project(ZJXF2022320)。
文摘With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum。
文摘Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金supported by the National Natural Science Foundation of China(82174230)the Fundamental Research Funds for the Central Universities(2042022kf1213)。
文摘Integrated traditional Chinese medicine(TCM)and Western medicine(WM)is a new medical science grounded in the knowledge bases of both TCM and WM,which then forms a unique modern medical system in China.Integrated TCM and WM has a long history in China,and has made important achievements in the process of clinical diagnosis and treatment.However,the methodological defects in currently published clinical practice guidelines(CPGs)limit its development.The organic integration of TCM and WM is a deeper integration of TCM and WM.To realize the progression of"integration"to"organic integration",a targeted and standardized guideline development methodology is needed.Therefore,the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.
基金Project supported by the National Natural Science Foundation of China(Grant No.62171312)the Tianjin Municipal Education Commission Scientific Research Project,China(Grant No.2020KJ114).
文摘Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.
基金supported by the National Natural Science Foundation of China (No.32070656)the Nanjing University Deng Feng Scholars Program+1 种基金the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions,China Postdoctoral Science Foundation funded project (No.2022M711563)Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB50)
文摘Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(21875022,22179008)+4 种基金the Yibin‘Jie Bang Gua Shuai’(2022JB004)the support from the Beijing Nova Program(20230484241)the support from the Postdoctoral Fellowship Program of CPSF(GZB20230931)the support from the 4B7B beam line of Beijing Synchrotron Radiation Facility(2021-BEPC-PT-005924,2021-BEPC-PT-005967)BL08U1A beam line of Shanghai Synchrotron Radiation Facility(2021-SSRF-PT-017710)。
文摘The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.
基金partially supported by the Fundamental Research Funds for the Central Universities(GK202207018)of China。
文摘We study the closed range property and the strict singularity of integration operators acting on the spaces F(p,pα-2,s).We completely characterize the closed range property of the Volterra companion operator I_(g)on F(p,pα-2,s),which generalizes the existing results and answers a question raised in[A.Anderson,Integral Equations Operator Theory,69(2011),no.1,87-99].For the Volterra operator J_(g),we show that,for 0<α≤1,J_(g)never has a closed range on F(p,pα-2,s).We then prove that the notions of compactness,weak compactness and strict singularity coincide in the case of J_(g)acting on F(p,p-2,s).
基金Project supported by the National Natural Science Foundation of China(Grant No.11574153)the Foundation of the Ministry of Industry and Information Technology of China(Grant No.TSXK2022D007)。
文摘This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.
文摘It has historically been very difficult to trace the history of the westward transmission of Chinese medicine through the accounts of its protagonists. Many of the early scholars such as Jack Worsley, Dick Van Buren, and Joe Goodman were reluctant to divulge information about the source of their knowledge, or their professional qualifications. Others, such as John Shen and Hong Yuan-bain were early 20th century immigrants who transmitted highly personalized versions of acupuncture and Chinese medicine to select disciples. Eventually, a new class of scholars appeared, including names such as Ted Kaptchuk, Peter Deadman, Nigel Wiseman, William Morris, Peter Eckman, John Mc Donald, Charles Buck, and the late Giovanni Maciocia who looked for answers back in China, developed translation methodologies and terminology, compiled the main textbooks currently in use at TCM colleges, overcame enormous scholastic adversity, developed courses and pursued the regulation and accreditation of TCM in various countries. This special issue synopsizes the path towards the global acculturation of TCM over the last 50 years, the main protagonists, the enormous accomplishments they have achieved for the profession, their philosophy, their clinical perspectives and visions for the future.
基金supported by the National Natural Science Foundation of China(Grant number 51977154)。
文摘Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金funded by the National Natural Science Foundation of China(52222704 and 52177107).
文摘In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.
基金support of the National Key R&D Program of China(2023YFD2301500)the China Agriculture System of MOF and MARA(CARS-02)the Shandong Central Guiding the Local Science and Technology Development,China(YDZX20203700002548)。
文摘The footprints of water and nitrogen(WF and NF)provide a comprehensive overview of the type and quantity of water consumption and reactive nitrogen(Nr)loss in crop production.In this study,a field experiment over two years(2019 and 2020)compared three integrated agronomic practice management(IAPM)systems:An improved management system(T2),a high-yield production system(T3),and an integrated soil-crop management system(ISCM)using a local smallholder farmer’s practice system(T1)as control,to investigate the responses of WF,Nr losses,water use efficiency(WUE),and nitrogen use efficiency(NUE)to IAPM.The results showed that IAPM optimized water distribution and promoted water use by summer maize.The evapotranspiration over the whole maize growth period of IAPM increased,but yield increased more,leading to a significant increase in WUE.The WUE of the T2,T3,and ISCM treatments was significantly greater than in the T1 treatment,in 2019 and 2020respectively,by 19.8-21.5,31.8-40.6,and 34.4-44.6%.The lowest WF was found in the ISCM treatment,which was 31.0%lower than that of the T1 treatment.In addition,the ISCM treatment optimized soil total nitrogen(TN)distribution and significantly increased TN in the cultivated layer.Excessive nitrogen fertilizer was applied in treatment T3,producing the highest maize yield,and resulting in the highest Nr losses.In contrast,the ISCM treatment used a reduced nitrogen fertilizer rate,sacrificing grain yield partly,which reduced Nr losses and eventually led to a significant increase in nitrogen use efficiency and nitrogen recovery.The Nr level in the ISCM treatment was34.8%lower than in the T1 treatment while NUE was significantly higher than in the T1 treatment by 56.8-63.1%in2019 and 2020,respectively.Considering yield,WUE,NUE,WF,and NF together,ISCM should be used as a more sustainable and clean system for sustainable production of summer maize.
基金Study on Green Development in Agriculture and Rural Areas to Enable the Building of a Low-Carbon Society (LD23YB02)funded by the 2023 Chengdu Green and Low-Carbon Development Research Base Project.
文摘This paper examined the relationship between cultural consumption and the floating population’s integration into host cities based on data from China’s Seventh National Population Census and the 2018 China Migrants Dynamic Survey(CMDS).The findings indicate that improving the floating population’s consumption level and quality,especially the quality of development-oriented cultural consumption,can significantly improve the level of their integration.Moreover,development-oriented cultural consumption has a positive effect on the floating population’s integration and social participation,while entertainment-oriented cultural consumption facilitates their integration mainly by improving their sense of well-being.These findings could guide policymakers in developing targeted cultural consumption policies,implementing specific regional industry adjustments,and expanding domestic consumption demand.