期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Arrhenius parameters determination in non-isothermal conditions for mechanically activated Ag_2O-graphite mixture 被引量:1
1
作者 Seyed Hadi SHAHCHERAGHI Gholam Reza KHAYATI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3994-4003,共10页
The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evalua... The non-isothermal kinetics of mechanochemical reduction of Ag2O with graphite was studied by DSC and TGA with a model of fitting Malek approach and a model-free advanced isoconversional method of Vyazovkin. To evaluate the kinetics parameters, Ag2O–graphite mixture of as-received and milled for 2 and 4 h samples were selected. Based on the results obtained by Vyazovkin method calculation, however, the difference between the maximum and minimum values of activation energy is less than 20%-30%of the average activation energy ((99.38±2.36) kJ/mol) and thermal decomposition of mechanically activated Ag2O for 2 h is a multi-step process. Moreover, the thermal decomposition of mechanically activated Ag2O–graphite powder activated for 4 h is a single-step process (the average activation energy=(93.68±2.26) kJ/mol). The kinetics modeling shows that the complexity of thermal decomposition of as-received Ag2O–graphite mixture is higher than that of the others. While, the autocatalytic tendency of as-received Ag2O–graphite mixture is lower than that of the others. 展开更多
关键词 mechanical activation Vyazovkin method kinetic modeling Sestak-Berggren model integral master plot method silver oxide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部