Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {...Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.展开更多
In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalga...In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalgamations of the Riemann-Liouville(RL)fractional integral operator and several other fractional operators.Meanwhile,several generalizations are considered in order to demonstrate the novel variants involving a family of positive functions n(n∈N)for the proposed fractional operator.In order to confirm and demonstrate the proficiency of the characterized strategy,we analyze existing fractional integral operators in terms of classical fractional order.Meanwhile,some special cases are apprehended and the new outcomes are also illustrated.The obtained consequences illuminate that future research is easy to implement,profoundly efficient,viable,and exceptionally precise in its investigation of the behavior of non-linear differential equations of fractional order that emerge in the associated areas of science and engineering.展开更多
文摘Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.
基金supported by the National Natural Science Foundation of China(Grant No.61673169).
文摘In the present case,we propose the novel generalized fractional integral operator describing Mittag-Leffler function in their kernel with respect to another function Φ.The proposed technique is to use graceful amalgamations of the Riemann-Liouville(RL)fractional integral operator and several other fractional operators.Meanwhile,several generalizations are considered in order to demonstrate the novel variants involving a family of positive functions n(n∈N)for the proposed fractional operator.In order to confirm and demonstrate the proficiency of the characterized strategy,we analyze existing fractional integral operators in terms of classical fractional order.Meanwhile,some special cases are apprehended and the new outcomes are also illustrated.The obtained consequences illuminate that future research is easy to implement,profoundly efficient,viable,and exceptionally precise in its investigation of the behavior of non-linear differential equations of fractional order that emerge in the associated areas of science and engineering.