The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of...The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of the traditional methods rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel configurations, which is universal and efficient for different materials, different structures, different modes, different wavelengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algorithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization of photonic chips.展开更多
The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and e...The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.展开更多
As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a...As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a series of intelligent algorithms such as simulated annealing algorithm(SA),genetic algorithm(GA),and ant colony optimization algorithm(ACO) or their mixed algorithms,to resolve the optimization of tasks schedule and data transmission.This article analyzes the performance of abovementioned algorithms and verifies their feasibility associated with agents.The simulations demonstrates that the mixed algorithms based on SA and GA obtain the optimal solution to tasks schedule,and those combined with SA-ACO show advantages on multimedia sensor networks routing optimization.展开更多
One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as ene...One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output.Therefore,the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell,which is needed to investigate their ability to supply electrical energy.To determine this important power production,real data of solar-radiation intensity and wind are used and,in modelling photovoltaic cells,the effects of ambient temperature are also considered.In order to generalize the studied system in all dimensions,different scenarios have been considered.According to the amount of electrical power generated,during the evaluation of these scenarios,two economic parameters,namely the selected scenario of a wind/solar system with diesel-generator support,was determined.展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin com...Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.展开更多
The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct ...The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.展开更多
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im...Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.展开更多
A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence....A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.Furthermore,in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature.Using the basic cuckoo and the gray wolf algorithms,an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two types of asphalt pavement materials and the temperature.As shown by the results,the prediction accuracy achievable with this approach is higher than that of the linear model.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i...TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.展开更多
To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location al...To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject t...With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned.展开更多
Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn s...Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.展开更多
With the increasing global demand for renewable energy,the application of photovoltaic power generation in mountainous areas is gradually increasing.However,the complex wind environment in mountainous areas poses seve...With the increasing global demand for renewable energy,the application of photovoltaic power generation in mountainous areas is gradually increasing.However,the complex wind environment in mountainous areas poses severe challenges to the design and optimization of solar photovoltaic brackets.Traditional design methods are difficult to cope with the changeable wind speed and direction in mountainous areas,resulting in structural instability or material waste.Researchers have identified the key factors affecting wind response through parametric research and dynamic wind response analysis,so as to optimize the brackets design and improve its adaptability and stability in complex wind environments.In this paper,the complexity of wind speed,wind direction and turbulence characteristics in mountainous areas and their influence on brackets design are explored.Through static and dynamic wind load analysis,the geometrical shape and material selection of the bracket are optimized to enhance its wind resistance.The application of multi-objective optimization model and intelligent optimization algorithm provides an effective solution for the design of solar photovoltaic brackets,ensuring their safety and reliability in complex wind environments.展开更多
In last few years,big data and deep learning technologies have been successfully applied in various fields of civil engineering with the great progress of machine learning techniques.However,until now,there has been n...In last few years,big data and deep learning technologies have been successfully applied in various fields of civil engineering with the great progress of machine learning techniques.However,until now,there has been no comprehensive review on its applications in civil engineering.To fill this gap,this paper reviews the application and development of artificial intelligence in civil engineering in recent years,including intelligent algorithms,big data and deep learning.Through the work of this paper,the research direction and difficulties of artificial intelligence in civil engineering for the past few years can be known.It is shown that the studies of artificial intelligence in civil engineering mainly focus on structural maintenance and management,and the design optimization.展开更多
Background: Acute kidney injury(AKI) is a common complication after liver transplantation(LT) and is an indicator of poor prognosis. The establishment of a more accurate preoperative prediction model of AKI could help...Background: Acute kidney injury(AKI) is a common complication after liver transplantation(LT) and is an indicator of poor prognosis. The establishment of a more accurate preoperative prediction model of AKI could help to improve the prognosis of LT. Machine learning algorithms provide a potentially effective approach. Methods: A total of 493 patients with donation after cardiac death LT(DCDLT) were enrolled. AKI was defined according to the clinical practice guidelines of kidney disease: improving global outcomes(KDIGO). The clinical data of patients with AKI(AKI group) and without AKI(non-AKI group) were compared. With logistic regression analysis as a conventional model, four predictive machine learning models were developed using the following algorithms: random forest, support vector machine, classical decision tree, and conditional inference tree. The predictive power of these models was then evaluated using the area under the receiver operating characteristic curve(AUC). Results: The incidence of AKI was 35.7%(176/493) during the follow-up period. Compared with the nonAKI group, the AKI group showed a remarkably lower survival rate( P<0.001). The random forest model demonstrated the highest prediction accuracy of 0.79 with AUC of 0.850 [95% confidence interval(CI): 0.794–0.905], which was significantly higher than the AUCs of the other machine learning algorithms and logistic regression models( P<0.001). Conclusions: The random forest model based on machine learning algorithms for predicting AKI occurring after DCDLT demonstrated stronger predictive power than other models in our study. This suggests that machine learning methods may provide feasible tools for forecasting AKI after DCDLT.展开更多
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard m...A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11604378, 91850117, and 11654003)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of the traditional methods rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel configurations, which is universal and efficient for different materials, different structures, different modes, different wavelengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algorithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization of photonic chips.
基金Project(41574123)supported by the National Natural Science Foundation of ChinaProject(2015zzts250)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2013FY110800)supported by the National Basic Research Scientific Program of China
文摘The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.
基金sponsored by the National Natural Science Foundation of China (60973139, 60773041)the Natural Science Foundation of Jiangsu Province (BK2008451)+4 种基金the Hi-Tech Research and Development Program of China (2007AA01Z404, 2007AA01Z478)Special Fund for Software Technology of Jiangsu ProvinceFoundation of National Laboratory for Modern Communications (9140C1105040805)Postdoctoral Foundation (0801019C, 20090451240)the six kinds of Top Talent of Jiangsu Province (2008118)
文摘As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a series of intelligent algorithms such as simulated annealing algorithm(SA),genetic algorithm(GA),and ant colony optimization algorithm(ACO) or their mixed algorithms,to resolve the optimization of tasks schedule and data transmission.This article analyzes the performance of abovementioned algorithms and verifies their feasibility associated with agents.The simulations demonstrates that the mixed algorithms based on SA and GA obtain the optimal solution to tasks schedule,and those combined with SA-ACO show advantages on multimedia sensor networks routing optimization.
文摘One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output.Therefore,the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell,which is needed to investigate their ability to supply electrical energy.To determine this important power production,real data of solar-radiation intensity and wind are used and,in modelling photovoltaic cells,the effects of ambient temperature are also considered.In order to generalize the studied system in all dimensions,different scenarios have been considered.According to the amount of electrical power generated,during the evaluation of these scenarios,two economic parameters,namely the selected scenario of a wind/solar system with diesel-generator support,was determined.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金supported by Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant Nos.62104056,62106041,and 62204204)+2 种基金the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001)the Fundamental Research Funds for the Central Universities(Grant No.223202100019).
文摘Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.
基金This work was supported by the key project of the National Natural Science Foundation of China (51235009).
文摘The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.
基金the Artificial Intelligence Key Laboratory of Sichuan Province(Nos.2019RYJ05)National Natural Science Foundation of China(Nos.61971107).
文摘Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.
文摘A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.Furthermore,in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature.Using the basic cuckoo and the gray wolf algorithms,an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two types of asphalt pavement materials and the temperature.As shown by the results,the prediction accuracy achievable with this approach is higher than that of the linear model.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
文摘TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.
基金National Natural Science Foundation of China(62202477)。
文摘To address the poor performance of commonly used intelligent optimization algorithms in solving location problems—specifically regarding effectiveness,efficiency,and stability—this study proposes a novel location allocation method for the delivery sites to deliver daily necessities during epidemic quarantines.After establishing the optimization objectives and constraints,we developed a relevant mathematical model based on the collected data and utilized traditional intelligent optimization algorithms to obtain Pareto optimal solutions.Building on the characteristics of these Pareto front solutions,we introduced an improved clustering algorithm and conducted simulation experiments using data from Changchun City.The results demonstrate that the proposed algorithm outperforms traditional intelligent optimization algorithms in terms of effectiveness,efficiency,and stability,achieving reductions of approximately 12%and 8%in time and labor costs,respectively,compared to the baseline algorithm.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned.
基金Supported by San Heng San Zong Project of Heilongjiang Bayi Agricultural University(ZRCPY202314).
文摘Corn stalks are a kind of common organic fertilizer and feed material in agriculture in China,as well as an important source of modern biomass energy and new materials.Hemicellulose is an important component in corn stalks,and it is very important to determine its content in corn stalks.In this paper,the feasibility of near-infrared spectroscopy(NIRS)combined with chemometrics for rapid detection of hemicellulose content in corn stalks was studied.In order to improve the accuracy of NIRS detection,a new intelligent optimization algorithm,dung beetle optimizer(DBO),was applied to select characteristic wavelengths of NIRS.Its modeling performance was compared with that based on characteristic wavelength selection using genetic algorithm(GA)and binary particle swarm optimization(BPSO),and it was found that the characteristic wavelength selection performance of DBO was excellent,and the regression accuracy of hemicellulose quantitative detection model established by its preferred characteristic wavelengths was better than the above two intelligent optimization algorithms.
文摘With the increasing global demand for renewable energy,the application of photovoltaic power generation in mountainous areas is gradually increasing.However,the complex wind environment in mountainous areas poses severe challenges to the design and optimization of solar photovoltaic brackets.Traditional design methods are difficult to cope with the changeable wind speed and direction in mountainous areas,resulting in structural instability or material waste.Researchers have identified the key factors affecting wind response through parametric research and dynamic wind response analysis,so as to optimize the brackets design and improve its adaptability and stability in complex wind environments.In this paper,the complexity of wind speed,wind direction and turbulence characteristics in mountainous areas and their influence on brackets design are explored.Through static and dynamic wind load analysis,the geometrical shape and material selection of the bracket are optimized to enhance its wind resistance.The application of multi-objective optimization model and intelligent optimization algorithm provides an effective solution for the design of solar photovoltaic brackets,ensuring their safety and reliability in complex wind environments.
基金This work has been supported by the Chinese National Natural Science Foundation(51208126,51578169)Guangzhou Municipal Science and Technology Bureau in China(201904010307).
文摘In last few years,big data and deep learning technologies have been successfully applied in various fields of civil engineering with the great progress of machine learning techniques.However,until now,there has been no comprehensive review on its applications in civil engineering.To fill this gap,this paper reviews the application and development of artificial intelligence in civil engineering in recent years,including intelligent algorithms,big data and deep learning.Through the work of this paper,the research direction and difficulties of artificial intelligence in civil engineering for the past few years can be known.It is shown that the studies of artificial intelligence in civil engineering mainly focus on structural maintenance and management,and the design optimization.
基金supported by grants from the National Science Fund for Distinguished Young Scholars (81625003)the National Natural Science Foundation of China (81930016)the National Science and Technology Major Project (2017ZX10203205)。
文摘Background: Acute kidney injury(AKI) is a common complication after liver transplantation(LT) and is an indicator of poor prognosis. The establishment of a more accurate preoperative prediction model of AKI could help to improve the prognosis of LT. Machine learning algorithms provide a potentially effective approach. Methods: A total of 493 patients with donation after cardiac death LT(DCDLT) were enrolled. AKI was defined according to the clinical practice guidelines of kidney disease: improving global outcomes(KDIGO). The clinical data of patients with AKI(AKI group) and without AKI(non-AKI group) were compared. With logistic regression analysis as a conventional model, four predictive machine learning models were developed using the following algorithms: random forest, support vector machine, classical decision tree, and conditional inference tree. The predictive power of these models was then evaluated using the area under the receiver operating characteristic curve(AUC). Results: The incidence of AKI was 35.7%(176/493) during the follow-up period. Compared with the nonAKI group, the AKI group showed a remarkably lower survival rate( P<0.001). The random forest model demonstrated the highest prediction accuracy of 0.79 with AUC of 0.850 [95% confidence interval(CI): 0.794–0.905], which was significantly higher than the AUCs of the other machine learning algorithms and logistic regression models( P<0.001). Conclusions: The random forest model based on machine learning algorithms for predicting AKI occurring after DCDLT demonstrated stronger predictive power than other models in our study. This suggests that machine learning methods may provide feasible tools for forecasting AKI after DCDLT.
基金National "863" Project of China (Grant no. 2007AA04Z224)
文摘A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.