The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comf...The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comfortable and safe living environment.The adoption of intelligent technology enables the creation of an intelligent management system,where controllers and sensors are used to adjust the light source within the building,monitor and manage the lighting system in real time,monitor the energy consumption and safety of the system,and achieve the goal of energy saving and emission reduction.This paper briefly discusses the application and significance of intelligent technology in electrical lighting and puts forward design ideas to optimize electrical lighting and measures for lighting system management.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital para...A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.展开更多
The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the...The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.展开更多
The reality of global warming must have been settled by now while the incidence of same has in very recent times adopted unprecedented dimensions. The global community continues to look for ways to combat the impact o...The reality of global warming must have been settled by now while the incidence of same has in very recent times adopted unprecedented dimensions. The global community continues to look for ways to combat the impact of climate change and technology is looked upon to deliver the innovations that would ensure a better tomorrow today. Rapid advancement of Information Technology (IT), is now transforming the way we create and interact with the built environment with the notion of Intelligent Buildings (IBs) underscoring its main features. However, these IBs utilize systems that require energy, and fossil fuels are currently the world’s primary energy sources;they can also irreparably harm the environment, exacerbating climate change. What then is the true essence of IBs? This paper, through review of existing literature, attempts to explore some issues associated with the conceptualization of IBs, highlighting how they are similar with other notional options that deliver the same benefits but without the needed IT systems or the energy required in running them. It also discusses the need to focus on less energy demanding and management approaches at design or occupancy of buildings as a way to reduce the demand and thus consumption of fossil fuels across the world.展开更多
There is a growing demand for high building performance,providing better energy efficiency as well as high standard living and workplace. Intelligent Buildings (IBs) will meet the needs of sustainable development in b...There is a growing demand for high building performance,providing better energy efficiency as well as high standard living and workplace. Intelligent Buildings (IBs) will meet the needs of sustainable development in built environment. The Kingdom of Bahrain's construction industry has grown significantly in past years to support economic growth,other business sectors,and the aim to be one of the world's major financial centres. This paper aims at investigating current issues regarding intelligent buildings in the Kingdom of Bahrain. Case studies of three buildings,which are Bahrain Financial Harbour (BFH),Bahrain World Trade Centre (BWTC) Project and the Bahrain City Centre (BCC) Shopping Mall,have been carried out via structured observation,interview and questionnaire survey in Bahrain in 2007. Through this study,we conclude that the pace of construction in Bahrain and the Middle East is such that there are lots of scopes for IBs to develop further,both from the perspective of the number of IBs being built and also the sophistication of their specifications.展开更多
This paper presents a design of intelligent building control system based on multi-sensors. In order to achieve comfort, low carbon and energy conservation for buildings. The design uses STC89C52 chip, combined with m...This paper presents a design of intelligent building control system based on multi-sensors. In order to achieve comfort, low carbon and energy conservation for buildings. The design uses STC89C52 chip, combined with monitoring data of Pyroelectric infrared microwave dual sensor, temperature sensors and light sensors to control the optical system, the temperature control system and the security system. It helps to achieve low carbon and energy conservation. In addition, the energy-saving effect of a medium-sized multimedia classroom was analyzed. We analyze the feasibility of the system. It is proved that the system is low cost, high yield and easy to operate, with strong engineering application value.展开更多
<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorith...<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>展开更多
With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design...With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.展开更多
This paper introduces the traditional lighting control mode and analyzes of defects in three ways, so this paper puts forward four kinds of working mode of intelligent lighting control system. Combined with the workin...This paper introduces the traditional lighting control mode and analyzes of defects in three ways, so this paper puts forward four kinds of working mode of intelligent lighting control system. Combined with the working pattern, this paper designs an intelligent lighting control system to analyze the application advantages of intelligent system.展开更多
There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or ...There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.展开更多
Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,...Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.展开更多
Based on the existing roof gardens,this study aims to elaborate the functions of intelligent domestic roof gardens and the problems that should be noticed in the design of intelligent domestic roof gardens.
Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise...Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users.展开更多
When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the buildin...When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.展开更多
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv...In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.展开更多
The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommiss...The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommissioned sites or work within hazardous environments.This paper reports on the development,testing and delivery of a working mobile app prototype to facilitate the inspections and documentation of building facade condition monitoring.The work presented builds upon the development of an online platform for remote building inspection based on the integration of methodologies and tools,including VR(virtual reality),and digital photogrammetry to collect real-time data that support automated decision making.The mobile app:(i)allows the user to import 3D models and 2D building plans;(ii)provides the means of first-person exploration of models via a VR headset;and(iii)captures,records and catalogues images of façade defect types,and the date and time.An inspection case study was used to demonstrate and evaluate the mobile app prototype.The Building Inspector app allows building professionals to manage inspections and to track past and ongoing monitoring of the condition of building façades.展开更多
文摘The rapid development of intelligent technology has led to its introduction into the field of electrical lighting in buildings.It provides more technical support for system design,use,and management,and creates a comfortable and safe living environment.The adoption of intelligent technology enables the creation of an intelligent management system,where controllers and sensors are used to adjust the light source within the building,monitor and manage the lighting system in real time,monitor the energy consumption and safety of the system,and achieve the goal of energy saving and emission reduction.This paper briefly discusses the application and significance of intelligent technology in electrical lighting and puts forward design ideas to optimize electrical lighting and measures for lighting system management.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.
基金supported by National Natural Science Foundation of China under Grant No.60802016, 60972010by China Next Generation Internet (CNGI) project under Grant No.CNGI-09-03-05
文摘A complete study for the implementation of wireless sensor networks in the intelligent building is presented. We carry out some experiments to find out the factors affecting the network performance. Several vital parameters which are related to the link quality are measured before deploying the actual system. And then, we propose an optimized routing protocol based on the analysis of the test data. We evaluate the deployment strategies to ensure the excellent performance of the wireless sensor networks under the real working conditions. And the evaluation results show that the presented system could satisfy the requirements of the applications in the intelligent building.
文摘The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.
文摘The reality of global warming must have been settled by now while the incidence of same has in very recent times adopted unprecedented dimensions. The global community continues to look for ways to combat the impact of climate change and technology is looked upon to deliver the innovations that would ensure a better tomorrow today. Rapid advancement of Information Technology (IT), is now transforming the way we create and interact with the built environment with the notion of Intelligent Buildings (IBs) underscoring its main features. However, these IBs utilize systems that require energy, and fossil fuels are currently the world’s primary energy sources;they can also irreparably harm the environment, exacerbating climate change. What then is the true essence of IBs? This paper, through review of existing literature, attempts to explore some issues associated with the conceptualization of IBs, highlighting how they are similar with other notional options that deliver the same benefits but without the needed IT systems or the energy required in running them. It also discusses the need to focus on less energy demanding and management approaches at design or occupancy of buildings as a way to reduce the demand and thus consumption of fossil fuels across the world.
文摘There is a growing demand for high building performance,providing better energy efficiency as well as high standard living and workplace. Intelligent Buildings (IBs) will meet the needs of sustainable development in built environment. The Kingdom of Bahrain's construction industry has grown significantly in past years to support economic growth,other business sectors,and the aim to be one of the world's major financial centres. This paper aims at investigating current issues regarding intelligent buildings in the Kingdom of Bahrain. Case studies of three buildings,which are Bahrain Financial Harbour (BFH),Bahrain World Trade Centre (BWTC) Project and the Bahrain City Centre (BCC) Shopping Mall,have been carried out via structured observation,interview and questionnaire survey in Bahrain in 2007. Through this study,we conclude that the pace of construction in Bahrain and the Middle East is such that there are lots of scopes for IBs to develop further,both from the perspective of the number of IBs being built and also the sophistication of their specifications.
文摘This paper presents a design of intelligent building control system based on multi-sensors. In order to achieve comfort, low carbon and energy conservation for buildings. The design uses STC89C52 chip, combined with monitoring data of Pyroelectric infrared microwave dual sensor, temperature sensors and light sensors to control the optical system, the temperature control system and the security system. It helps to achieve low carbon and energy conservation. In addition, the energy-saving effect of a medium-sized multimedia classroom was analyzed. We analyze the feasibility of the system. It is proved that the system is low cost, high yield and easy to operate, with strong engineering application value.
文摘<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div>
文摘With the continuous development of science and technology and the gradual improvement of modem building technology, people pay more and more attention to the introduction of advanced technology in architectural design, such as the application of intelligent technology. With the increasingly severe environmental situation, people are increasingly demanding the environmental performance and green performance of buildings. The establishment of ultra-low energy consumption passive buildings has become one of the key construction contents of construction projects. This paper mainly analyzes the design points and architectural forms of related buildings from the perspective of intelligent control.
文摘This paper introduces the traditional lighting control mode and analyzes of defects in three ways, so this paper puts forward four kinds of working mode of intelligent lighting control system. Combined with the working pattern, this paper designs an intelligent lighting control system to analyze the application advantages of intelligent system.
基金This paper is supported by National Natural Science Foundation of China under Grant No.10372084
文摘There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model f or fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.
基金supported by The Social Science Foundation of Fujian Province(Grant no.FJ2021B080)The 2023 Fujian Provincial Foreign Cooperation Science and Technology Plan Project(2023I0047)+3 种基金The 2022 Longyan Industry-University-Research Joint Innovation Project(2022LYF18001)The 2023 Fujian Natural Resources Science and Tech-nology Innovation Project(KY-060000-04-2023-2002)Open Project Fund of Hunan Provincial Key Laboratory for Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area(Project No:DTH Key Lab.2023-04)The Construction Science and Technology Research and Development Project of Fujian Province,China(Grant no.2022-K-85).
文摘Historical architecture is an important carrier of cultural and historical heritage in a country and region,and its protection and restoration work plays a crucial role in the inheritance of cultural heritage.However,the damage and destruction of buildings urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human factors.Therefore,an artificial intelligence repair technology based on three-dimensional(3D)point cloud(PC)reconstruction and generative adversarial networks(GANs)was proposed to improve the precision and efficiency of repair work.First,in-depth research on the principles and algorithms of 3D PC data processing and GANs should be conducted.Second,a digital restoration frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of historical buildings through continuous adversarial learning processes.The experimental results showed that the errors in the restoration of palace buildings,defense walls,pagodas,altars,temples,and mausoleums were 0.17,0.12,0.13,0.11,and 0.09,respectively.The technique can significantly reduce the error while maintaining the high-precision repair effect.This technology with artificial intelligence as the core has excellent accuracy and stability in the digital restoration.It provides a new technical means for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.
文摘Based on the existing roof gardens,this study aims to elaborate the functions of intelligent domestic roof gardens and the problems that should be noticed in the design of intelligent domestic roof gardens.
文摘Our living environments are being gradually occupied with an abundant number of digital objects that have networking and computing capabilities. After these devices are plugged into a network, they initially advertise their presence and capabilities in the form of services so that they can be discovered and, if desired, exploited by the user or other networked devices. With the increasing number of these devices attached to the network, the complexity to configure and control them increases, which may lead to major processing and communication overhead. Hence, the devices are no longer expected to just act as primitive stand-alone appliances that only provide the facilities and services to the user they are designed for, but also offer complex services that emerge from unique combinations of devices. This creates the necessity for these devices to be equipped with some sort of intelligence and self-awareness to enable them to be self-configuring and self-programming. However, with this "smart evolution", the cognitive load to configure and control such spaces becomes immense. One way to relieve this load is by employing artificial intelligence (AI) techniques to create an intelligent "presence" where the system will be able to recognize the users and autonomously program the environment to be energy efficient and responsive to the user's needs and behaviours. These AI mechanisms should be embedded in the user's environments and should operate in a non-intrusive manner. This paper will show how computational intelligence (CI), which is an emerging domain of AI, could be employed and embedded in our living spaces to help such environments to be more energy efficient, intelligent, adaptive and convenient to the users.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/This research was funded by Korea Transportation Science and Technology Promotion Agency(No.21QPWO-B152223-03),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.
基金supported in part by the Institute of Information and Communications Technology Planning and Evaluation(IITP)Grant by the Korean Government Ministry of Science and ICT(MSITArtificial Intelligence Innovation Hub)under Grant 2021-0-02068in part by the NationalResearch Foundation of Korea(NRF)Grant by theKorean Government(MSIT)under Grant NRF-2021R1I1A3060565.
文摘In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.
文摘The manual visual inspections of façade building defects are posing a high and increasing cost for building asset managers,particularly when inspections delay projects or require asset outages,visits to decommissioned sites or work within hazardous environments.This paper reports on the development,testing and delivery of a working mobile app prototype to facilitate the inspections and documentation of building facade condition monitoring.The work presented builds upon the development of an online platform for remote building inspection based on the integration of methodologies and tools,including VR(virtual reality),and digital photogrammetry to collect real-time data that support automated decision making.The mobile app:(i)allows the user to import 3D models and 2D building plans;(ii)provides the means of first-person exploration of models via a VR headset;and(iii)captures,records and catalogues images of façade defect types,and the date and time.An inspection case study was used to demonstrate and evaluate the mobile app prototype.The Building Inspector app allows building professionals to manage inspections and to track past and ongoing monitoring of the condition of building façades.