The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th...The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.展开更多
This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to the...This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocatio...Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocation of the dispersed computing system is a significant challenge.In detail,by jointly managing the task requests of external users and the resource allocation of the internal system to achieve dynamic balance,the efficient and stable operation of the system can be guaranteed.In this paper,we first propose a task-resource joint management model,which quantifies the dynamic transformation relationship between the resources consumed by task requests and the resources occupied by the system in dispersed computing.Secondly,to avoid downtime caused by an overload of resources,we introduce intelligent control into the task-resource joint management model.The existence and stability of the positive periodic solution of the model can be obtained by theoretical analysis,which means that the stable operation of dispersed computing can be guaranteed through the intelligent feedback control strategy.Additionally,to improve the system utilization,the task-resource joint management model with bi-directional intelligent control is further explored.Setting control thresholds for the two resources not only reverse restrains the system resource overload,but also carries out positive incentive control when a large number of idle resources appear.The existence and stability of the positive periodic solution of the model are proved theoretically,that is,the model effectively avoids the two extreme cases and ensure the efficient and stable operation of the system.Finally,numerical simulation verifies the correctness and validity of the theoretical results.展开更多
With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular network...With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular networks(5G).The future sixth generation of mobile cellular networks(6G)is expected to have the capability to support new and unknown services with changing requirements.Hence,in addition to enhancing its capability by 10–100 times compared with 5G,6G should also be intelligent and open to adapt to the ever-changing services in the IoT,which requires a convergence of Communication,Computing and Caching(3C).Based on the analysis of the requirements of new services for 6G,this paper identifies key enabling technologies for an intelligent and open 6G network,all featured with 3C convergence.These technologies cover fundamental and emerging topics,including 3C-based spectrum management,radio channel construction,delay-aware transmission,wireless distributed computing,and network self-evolution.From the detailed analysis of these 3C-based technologies presented in this paper,we can see that although they are promising to enable an intelligent and open 6G,more efforts are needed to realize the expected 6G network.展开更多
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o...This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.展开更多
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im...Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.展开更多
Nowadays scalable Io T management is a bottleneck of Io T development due to the geographically dispersed distribution, fragmented ownerships, and ever-growing population of Io T devices. To intelligently manage massi...Nowadays scalable Io T management is a bottleneck of Io T development due to the geographically dispersed distribution, fragmented ownerships, and ever-growing population of Io T devices. To intelligently manage massive decentralized applications(d Apps) in Io T usecases, Edgence(EDGe + intellig ENCE) is proposed to use edge clouds to access Io T devices and users, and then use its in-built blockchain to realize self-governing and self-supervision of the edge clouds. Edgence proposes to use masternode technology to introduce Io T devices and users into a closed blockchain system, which can extend the range of blockchain to Io T-based d Apps. Further, masternodes do good to scalability by raising the TPS(transactions per second) of the blockchain network. To support various d Apps, a three-tier validation is proposed, namely script validation, smartcontract validation, and masternode validation. To avoid energy consumption resulted by blockchain consensus, Edgence proposes a random but verifiable way to elect a masternode to generate each new block. The potential of the tailored Edgence is shown by examples of decentralized crowdsourcing and AI training.展开更多
Introducing multi-UAV network with flexible deployment into mobile edge computing(MEC)can effectively improve the quality of service of Internet-of-Things services,reduce the coverage cost and resource waste rate of e...Introducing multi-UAV network with flexible deployment into mobile edge computing(MEC)can effectively improve the quality of service of Internet-of-Things services,reduce the coverage cost and resource waste rate of edge nodes,and also bring some challenges.This paper first introduces the current situation and pain points of mobile edge computing,then analyzes the significance and value of using multi-UAV network to assist mobile edge computing,and summarizes its key technologies and typical applications.In the end,some open research problems and technology prospects of multi-UAV network assisted intelligent edge computing are put forward,which provide new ideas for the future development of this field.展开更多
The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose...The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.展开更多
In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding ...In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding relay, which can assist a distant user in offloading tasks to the intelligent MEC server. Then, the closed-form expressions of offloading outage probability for a pair of users are derived in detail to evaluate the performance of the cooperative NOMA-MEC system. Furthermore, the approximate expressions of offloading outage probability are provided in the high signal-to-noise ratio region. Based on the asymptotic analyses, the diversity order of distant user and nearby user is n+m+1 and n+1, respectively. The system throughput and energy efficiency of cooperative NOMA-MEC are analyzed in delay-limited transmission mode. Numerical results show that 1) Cooperative NOMA-MEC is better than orthogonal multiple access(OMA) in terms of offload performance;2) The offload performance of cooperative NOMA-MEC system improves as the number of transmission task decreases;and 3) Cooperative NOMA-MEC performs better than OMA in energy efficiency.展开更多
The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solutio...The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface.In particular case,the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™and QCOptKB™sophisticated toolkit.Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described.The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown.Developed information technology examined with special(difficult in diagnostic practice)examples emotion state estimation of autism children(ASD)and dementia and background of the knowledge bases design for intelligent robot of service use is it.Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.展开更多
Recently, the possibility of using DNA as a computing tool arouses wide interests of many researchers. In this paper, we first explored the mechanism of DNA computing and its biological mathematics based on the mechan...Recently, the possibility of using DNA as a computing tool arouses wide interests of many researchers. In this paper, we first explored the mechanism of DNA computing and its biological mathematics based on the mechanism of biological DNA. Then we integrated DNA computing with evolutionary computation, fuzzy systems, neural networks and chaotic systems in soft computing technologies. Finally, we made some prospects on the further work of DNA bio soft computing.展开更多
Nowadays,with the widespread application of the Internet of Things(IoT),mobile devices are renovating our lives.The data generated by mobile devices has reached a massive level.The traditional centralized processing i...Nowadays,with the widespread application of the Internet of Things(IoT),mobile devices are renovating our lives.The data generated by mobile devices has reached a massive level.The traditional centralized processing is not suitable for processing the data due to limited computing power and transmission load.Mobile Edge Computing(MEC)has been proposed to solve these problems.Because of limited computation ability and battery capacity,tasks can be executed in the MEC server.However,how to schedule those tasks becomes a challenge,and is the main topic of this piece.In this paper,we design an efficient intelligent algorithm to jointly optimize energy cost and computing resource allocation in MEC.In view of the advantages of deep learning,we propose a Deep Learning-Based Traffic Scheduling Approach(DLTSA).We translate the scheduling problem into a classification problem.Evaluation demonstrates that our DLTSA approach can reduce energy cost and have better performance compared to traditional scheduling algorithms.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq...Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits ...This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.展开更多
基金supported by the National Natural Science Foundation of China(No.61871283).
文摘The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions.
文摘This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
基金supported in part by the National Science Foundation Project of P.R.China(No.61931001)the Scientific and Technological Innovation Foundation of Foshan,USTB(No.BK20AF003)。
文摘Dispersed computing can link all devices with computing capabilities on a global scale to form a fully decentralized network,which can make full use of idle computing resources.Realizing the overall resource allocation of the dispersed computing system is a significant challenge.In detail,by jointly managing the task requests of external users and the resource allocation of the internal system to achieve dynamic balance,the efficient and stable operation of the system can be guaranteed.In this paper,we first propose a task-resource joint management model,which quantifies the dynamic transformation relationship between the resources consumed by task requests and the resources occupied by the system in dispersed computing.Secondly,to avoid downtime caused by an overload of resources,we introduce intelligent control into the task-resource joint management model.The existence and stability of the positive periodic solution of the model can be obtained by theoretical analysis,which means that the stable operation of dispersed computing can be guaranteed through the intelligent feedback control strategy.Additionally,to improve the system utilization,the task-resource joint management model with bi-directional intelligent control is further explored.Setting control thresholds for the two resources not only reverse restrains the system resource overload,but also carries out positive incentive control when a large number of idle resources appear.The existence and stability of the positive periodic solution of the model are proved theoretically,that is,the model effectively avoids the two extreme cases and ensure the efficient and stable operation of the system.Finally,numerical simulation verifies the correctness and validity of the theoretical results.
基金This work is supported by the National Natural Science Youth Fund of China granted by No.61901452 and Innovative Project of ICT/CAS granted by No.20196110
文摘With the proliferation of the Internet of Things(IoT),various services are emerging with totally different features and requirements,which cannot be supported by the current fifth generation of mobile cellular networks(5G).The future sixth generation of mobile cellular networks(6G)is expected to have the capability to support new and unknown services with changing requirements.Hence,in addition to enhancing its capability by 10–100 times compared with 5G,6G should also be intelligent and open to adapt to the ever-changing services in the IoT,which requires a convergence of Communication,Computing and Caching(3C).Based on the analysis of the requirements of new services for 6G,this paper identifies key enabling technologies for an intelligent and open 6G network,all featured with 3C convergence.These technologies cover fundamental and emerging topics,including 3C-based spectrum management,radio channel construction,delay-aware transmission,wireless distributed computing,and network self-evolution.From the detailed analysis of these 3C-based technologies presented in this paper,we can see that although they are promising to enable an intelligent and open 6G,more efforts are needed to realize the expected 6G network.
基金supported in part by National Natural Science Foundation of China (Grant No. 62101277)in part by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200822)+1 种基金in part by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 20KJB510036)in part by the Guangxi Key Laboratory of Multimedia Communications and Network Technology (Grant No. KLF-2020-03)。
文摘This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.
基金the Artificial Intelligence Key Laboratory of Sichuan Province(Nos.2019RYJ05)National Natural Science Foundation of China(Nos.61971107).
文摘Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.
基金supported in part by the National Science Foundation of China(Grant No.61922017).
文摘Nowadays scalable Io T management is a bottleneck of Io T development due to the geographically dispersed distribution, fragmented ownerships, and ever-growing population of Io T devices. To intelligently manage massive decentralized applications(d Apps) in Io T usecases, Edgence(EDGe + intellig ENCE) is proposed to use edge clouds to access Io T devices and users, and then use its in-built blockchain to realize self-governing and self-supervision of the edge clouds. Edgence proposes to use masternode technology to introduce Io T devices and users into a closed blockchain system, which can extend the range of blockchain to Io T-based d Apps. Further, masternodes do good to scalability by raising the TPS(transactions per second) of the blockchain network. To support various d Apps, a three-tier validation is proposed, namely script validation, smartcontract validation, and masternode validation. To avoid energy consumption resulted by blockchain consensus, Edgence proposes a random but verifiable way to elect a masternode to generate each new block. The potential of the tailored Edgence is shown by examples of decentralized crowdsourcing and AI training.
基金supported by the National Natural Science Foundation of China(NSFC)with Grant 61720106001。
文摘Introducing multi-UAV network with flexible deployment into mobile edge computing(MEC)can effectively improve the quality of service of Internet-of-Things services,reduce the coverage cost and resource waste rate of edge nodes,and also bring some challenges.This paper first introduces the current situation and pain points of mobile edge computing,then analyzes the significance and value of using multi-UAV network to assist mobile edge computing,and summarizes its key technologies and typical applications.In the end,some open research problems and technology prospects of multi-UAV network assisted intelligent edge computing are put forward,which provide new ideas for the future development of this field.
基金This work was supported in part by the National Natural Science Foundation of China(61933015).
文摘The shortage of computation methods and storage devices has largely limited the development of multiobjective optimization in industrial processes.To improve the operational levels of the process industries,we propose a multi-objective optimization framework based on cloud services and a cloud distribution system.Real-time data from manufacturing procedures are first temporarily stored in a local database,and then transferred to the relational database in the cloud.Next,a distribution system with elastic compute power is set up for the optimization framework.Finally,a multi-objective optimization model based on deep learning and an evolutionary algorithm is proposed to optimize several conflicting goals of the blast furnace ironmaking process.With the application of this optimization service in a cloud factory,iron production was found to increase by 83.91 t∙d^(-1),the coke ratio decreased 13.50 kg∙t^(-1),and the silicon content decreased by an average of 0.047%.
基金supported in part by the Natural Science Foundation of Beijing Municipality under Grant 4204099,Grant 19L2022,Grant L182032,Grant L182039 and Grant KZ201911232046the Science and Technology Project of Beijing Municipal Education Commission under Grant KM202011232002 and Grant KM202011232003。
文摘In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding relay, which can assist a distant user in offloading tasks to the intelligent MEC server. Then, the closed-form expressions of offloading outage probability for a pair of users are derived in detail to evaluate the performance of the cooperative NOMA-MEC system. Furthermore, the approximate expressions of offloading outage probability are provided in the high signal-to-noise ratio region. Based on the asymptotic analyses, the diversity order of distant user and nearby user is n+m+1 and n+1, respectively. The system throughput and energy efficiency of cooperative NOMA-MEC are analyzed in delay-limited transmission mode. Numerical results show that 1) Cooperative NOMA-MEC is better than orthogonal multiple access(OMA) in terms of offload performance;2) The offload performance of cooperative NOMA-MEC system improves as the number of transmission task decreases;and 3) Cooperative NOMA-MEC performs better than OMA in energy efficiency.
文摘The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface.In particular case,the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™and QCOptKB™sophisticated toolkit.Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described.The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown.Developed information technology examined with special(difficult in diagnostic practice)examples emotion state estimation of autism children(ASD)and dementia and background of the knowledge bases design for intelligent robot of service use is it.Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.
文摘Recently, the possibility of using DNA as a computing tool arouses wide interests of many researchers. In this paper, we first explored the mechanism of DNA computing and its biological mathematics based on the mechanism of biological DNA. Then we integrated DNA computing with evolutionary computation, fuzzy systems, neural networks and chaotic systems in soft computing technologies. Finally, we made some prospects on the further work of DNA bio soft computing.
基金supported in part by the National Natural Science Foun-dation of China(61902029)R&D Program of Beijing Municipal Education Commission(No.KM202011232015)Project for Acceleration of University Classi cation Development(Nos.5112211036,5112211037,5112211038).
文摘Nowadays,with the widespread application of the Internet of Things(IoT),mobile devices are renovating our lives.The data generated by mobile devices has reached a massive level.The traditional centralized processing is not suitable for processing the data due to limited computing power and transmission load.Mobile Edge Computing(MEC)has been proposed to solve these problems.Because of limited computation ability and battery capacity,tasks can be executed in the MEC server.However,how to schedule those tasks becomes a challenge,and is the main topic of this piece.In this paper,we design an efficient intelligent algorithm to jointly optimize energy cost and computing resource allocation in MEC.In view of the advantages of deep learning,we propose a Deep Learning-Based Traffic Scheduling Approach(DLTSA).We translate the scheduling problem into a classification problem.Evaluation demonstrates that our DLTSA approach can reduce energy cost and have better performance compared to traditional scheduling algorithms.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
基金the National Natural Science Foundation of China(Grant No.52072041)the Beijing Natural Science Foundation(Grant No.JQ21007)+2 种基金the University of Chinese Academy of Sciences(Grant No.Y8540XX2D2)the Robotics Rhino-Bird Focused Research Project(No.2020-01-002)the Tencent Robotics X Laboratory.
文摘Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金funded by University Grant Commission with UGC-Ref.No.:3364/(NET-JUNE 2015).
文摘This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit.