With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha...With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge.展开更多
In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military i...In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military intelligence database are discussed. On this condition, a new data-mining arithmetic based on relation intelligence database is presented according to the preference information and the requirement of time limit given by the commander. Furthermore, a simple calculative example is presented to prove the arithmetic with better maneuverability. Lastly, the problem of how to process the intelligence data mined from the intelligence database is discussed.展开更多
As an application of artificial intelligence and expert system technology to database design,this paper presents an intelligent design tool NITDT,which comprises a requirements specification lan- guage NITSL,a knowled...As an application of artificial intelligence and expert system technology to database design,this paper presents an intelligent design tool NITDT,which comprises a requirements specification lan- guage NITSL,a knowledge representation language NITKL,and an inference engine with uncertainty reasoning capability.NITDT now covers the requirements analysis and conceptual design of database design.However,it is possible to be integrated with another database design tool, NITDBA,developed also at NIT to become an integrated design tool supporting the whole process of database design.展开更多
文摘With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge.
文摘In order to rapidly and effectively meet the informative demand from commanding decision-making, it is important to build, maintain and mine the intelligence database. The type, structure and maintenance of military intelligence database are discussed. On this condition, a new data-mining arithmetic based on relation intelligence database is presented according to the preference information and the requirement of time limit given by the commander. Furthermore, a simple calculative example is presented to prove the arithmetic with better maneuverability. Lastly, the problem of how to process the intelligence data mined from the intelligence database is discussed.
文摘As an application of artificial intelligence and expert system technology to database design,this paper presents an intelligent design tool NITDT,which comprises a requirements specification lan- guage NITSL,a knowledge representation language NITKL,and an inference engine with uncertainty reasoning capability.NITDT now covers the requirements analysis and conceptual design of database design.However,it is possible to be integrated with another database design tool, NITDBA,developed also at NIT to become an integrated design tool supporting the whole process of database design.