CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized th...CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized the development of biomedical research at an unexpected speed in recent years. The development of intelligent and precise CRISPR delivery strategies in a controllable and safe manner is the prerequisite for translational clinical medicine in gene therapy field. In this review, the therapeutic application of CRISPR delivery and the translational potential of gene editing was firstly discussed. Critical obstacles for the delivery of CRISPR system in vivo and shortcomings of CRISPR system itself were also analyzed. Given that intelligent nanoparticles have demonstrated great potential on the delivery of CRISPR system, here we mainly focused on stimuli-responsive nanocarriers. We also summarized various strategies for CIRSPR-Cas9 system delivered by intelligent nanocarriers which would respond to different endogenous and exogenous signal stimulus. Moreover, new genome editors mediated by nanotherapeutic vectors for gene therapy were also discussed. Finally, we discussed future prospects of genome editing for existing nanocarriers in clinical settings.展开更多
Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based o...Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based on the imageand video processing technology of OpenCV, the Faster R-CNN object detectionalgorithm and other technologies. Through the depth camera and electronic scale,it can identify the object category, volume and weight of the items placed on thescale by the sender and store the video of the objects packed into the cabinet. Theoverall framework of the systemwas constructed;key technologies were applied torealize the system;the function of the system was tested. The experimental resultsshow that it achieves the intelligent automation of delivery and delivery throughthe integrated express delivery system of intelligent identification and informationtraceability, which promotes the development of express delivery industry.展开更多
The hollow structure has long attracted great attention because of its excellent properties.However,this special structure is usually synthesized through some complex approaches.Herein,we discovered that denatured bov...The hollow structure has long attracted great attention because of its excellent properties.However,this special structure is usually synthesized through some complex approaches.Herein,we discovered that denatured bovine serum albumin(BSA)can trigger unusual biomineralization for the simple,green and shape-controllable synthesis of germanium oxide(GeOx)hollow microsphere(HMS).At high temperature(60℃),BSA was denatured,and a compact BSA layer was formed around the H2 bubbles.The denatured BSA layer was stable and suitable for anchoring and growing GeOx.By simply changing the BSA concentration and temperature,various morphologies of GeOx could be obtained.Due to the denatured protein skeletons and microenvironment-regulated collapse,GeOx HMS showed great potential for intelligently responsive pesticide delivery in the insect gut,showing superiority over traditional delivery systems,which early release pesticides in the mouth and stomach.Inspired by its large specific surface area,excellent biocompatibility,modifiable functional groups,and high electrocatalytic activity,GeOx HMS was also applied to versatile sensors for H_(2)O_(2) assays at physiological pH and rapid coronavirus COVID-19 detection.This work not only provides some evidence for understanding proteins in depth but also paves a new avenue for the biomineralization-inspired synthesis of hollow structures with versatile functions.展开更多
Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functional...Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functionalization,especially made into intelligent drug delivery systems(DDSs)for cancer therapy.HMSNS are employed to transport traditional anti-tumor drugs,which can solve the problems of drugs with instability,poor solubility and lack of recognition,etc.,while significantly improving the anti-tumor effect.And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment.Actually,HMSNs-based DDSS have developed relatively mature in recent years.This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS,as well as its degradation,different stimuli-responses,targets and combination therapy.These versatile intelligent nanoparticles show great potential in clinical aspects.展开更多
Engineering of smart building molecules is key basis in designing intelligent drug delivery systems.As an emerging sophisticated delivery system strategy,the powerful functions of peptide drug conjugates(PDCs)are attr...Engineering of smart building molecules is key basis in designing intelligent drug delivery systems.As an emerging sophisticated delivery system strategy,the powerful functions of peptide drug conjugates(PDCs)are attributed to a smart linker and multifunctional peptide domain.Peptides exhibit a wide range of functions and properties,including easy chemical synthesis and versatile modification,tunable biocompatibility,diversified self-assembled nanostructures,specific recognition/binding,and deep penetration of the cell membrane/extracellular matrix.In addition,various types of linkers enable PDCs to release drugs responsively according to the disease microen-vironment or treatment needs.Owing to these inherent advantages,PDCs have been widely explored for drug delivery.Herein,the latest developments in functional peptides and linkers commonly used to construct smart PDCs are reviewed.The purpose is to bring widespread attention to PDC design strategies and their contribution to fighting various diseases,as well as to provide guidance for research on intelligent PDC drug delivery systems.展开更多
基金funded by National Natural Science Foundation of China (No. 31901010)Jiangsu Specially Appointed Professorship Foundationthe Priority Academic Program Development of Jiangsu Higher Education Institutions (Integration of Chinese and Western Medicine)。
文摘CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized the development of biomedical research at an unexpected speed in recent years. The development of intelligent and precise CRISPR delivery strategies in a controllable and safe manner is the prerequisite for translational clinical medicine in gene therapy field. In this review, the therapeutic application of CRISPR delivery and the translational potential of gene editing was firstly discussed. Critical obstacles for the delivery of CRISPR system in vivo and shortcomings of CRISPR system itself were also analyzed. Given that intelligent nanoparticles have demonstrated great potential on the delivery of CRISPR system, here we mainly focused on stimuli-responsive nanocarriers. We also summarized various strategies for CIRSPR-Cas9 system delivered by intelligent nanocarriers which would respond to different endogenous and exogenous signal stimulus. Moreover, new genome editors mediated by nanotherapeutic vectors for gene therapy were also discussed. Finally, we discussed future prospects of genome editing for existing nanocarriers in clinical settings.
基金This article is supported by the 2020 Innovation and Entrepreneurship Training Program forCollege Students in Jiangsu Province(Project name:Traceablemulti-functional intelligent express cabinet,No.201911460090P,No.202011460090T)This article is supported by the National Natural Science Foundation of China Youth Science Foundation project(Project name:Research on Deep Discriminant Spares Representation Learning Method for Feature Extraction,No.61806098)This article is supported by Scientific Research Project of Nanjing XiaoZhuang University(Project name:Multi-robot collaborative system,No.2017NXY16).
文摘Although the scale of the express industry is large, it is difficult toachieve the function of fully intelligent receiving and sending express. In thispaper, the intelligent express delivery system is proposed based on the imageand video processing technology of OpenCV, the Faster R-CNN object detectionalgorithm and other technologies. Through the depth camera and electronic scale,it can identify the object category, volume and weight of the items placed on thescale by the sender and store the video of the objects packed into the cabinet. Theoverall framework of the systemwas constructed;key technologies were applied torealize the system;the function of the system was tested. The experimental resultsshow that it achieves the intelligent automation of delivery and delivery throughthe integrated express delivery system of intelligent identification and informationtraceability, which promotes the development of express delivery industry.
基金National Natural Science Foundation of China,Grant/Award Number:21705087Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2021MB018+1 种基金Research Foundation for Distinguished Scholars of Qingdao Agricultural University,Grant/Award Number:663-1117015Introducing and Breeding Plan of Shandong Province Higher Educational Youth Innovation Talents(Shandong Provincial Department of Education)。
文摘The hollow structure has long attracted great attention because of its excellent properties.However,this special structure is usually synthesized through some complex approaches.Herein,we discovered that denatured bovine serum albumin(BSA)can trigger unusual biomineralization for the simple,green and shape-controllable synthesis of germanium oxide(GeOx)hollow microsphere(HMS).At high temperature(60℃),BSA was denatured,and a compact BSA layer was formed around the H2 bubbles.The denatured BSA layer was stable and suitable for anchoring and growing GeOx.By simply changing the BSA concentration and temperature,various morphologies of GeOx could be obtained.Due to the denatured protein skeletons and microenvironment-regulated collapse,GeOx HMS showed great potential for intelligently responsive pesticide delivery in the insect gut,showing superiority over traditional delivery systems,which early release pesticides in the mouth and stomach.Inspired by its large specific surface area,excellent biocompatibility,modifiable functional groups,and high electrocatalytic activity,GeOx HMS was also applied to versatile sensors for H_(2)O_(2) assays at physiological pH and rapid coronavirus COVID-19 detection.This work not only provides some evidence for understanding proteins in depth but also paves a new avenue for the biomineralization-inspired synthesis of hollow structures with versatile functions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51773162 and 21204071).
文摘Hollow mesoporous silica nanoparticles(HMSNs)have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties,large specific surface area and facile functionalization,especially made into intelligent drug delivery systems(DDSs)for cancer therapy.HMSNS are employed to transport traditional anti-tumor drugs,which can solve the problems of drugs with instability,poor solubility and lack of recognition,etc.,while significantly improving the anti-tumor effect.And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment.Actually,HMSNs-based DDSS have developed relatively mature in recent years.This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS,as well as its degradation,different stimuli-responses,targets and combination therapy.These versatile intelligent nanoparticles show great potential in clinical aspects.
基金supported by National Natural Science Foundation of China(No.82173992,81773662,81973488,81804100)National Key R&D program of China(2018YFC1706905)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX_201491).
文摘Engineering of smart building molecules is key basis in designing intelligent drug delivery systems.As an emerging sophisticated delivery system strategy,the powerful functions of peptide drug conjugates(PDCs)are attributed to a smart linker and multifunctional peptide domain.Peptides exhibit a wide range of functions and properties,including easy chemical synthesis and versatile modification,tunable biocompatibility,diversified self-assembled nanostructures,specific recognition/binding,and deep penetration of the cell membrane/extracellular matrix.In addition,various types of linkers enable PDCs to release drugs responsively according to the disease microen-vironment or treatment needs.Owing to these inherent advantages,PDCs have been widely explored for drug delivery.Herein,the latest developments in functional peptides and linkers commonly used to construct smart PDCs are reviewed.The purpose is to bring widespread attention to PDC design strategies and their contribution to fighting various diseases,as well as to provide guidance for research on intelligent PDC drug delivery systems.