Case-based reasoning (CBR) is an important reasoning technique of expert system. In this paper, the authors introduce CBR to intelligent early-warning support system, which could warn quantitatively for enterprise f...Case-based reasoning (CBR) is an important reasoning technique of expert system. In this paper, the authors introduce CBR to intelligent early-warning support system, which could warn quantitatively for enterprise financial crisis and could warn qualitatively by expert's knowledge and experience. Furthermore, genetic algorithm is applied to case-based reasoning in CBR-IEWSS, which improves accuracy and efficiency of case retrieval. Last, the structure of CBR-IEWSS is given.展开更多
In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested...In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.展开更多
This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially...This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.展开更多
Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptua...Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.展开更多
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor...In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.展开更多
Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BL...Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.展开更多
Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point ...Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.展开更多
Rainfall forecasting is becoming more and more significant and precipitation anomalies would lead to droughts and floods disasters.However,because of the complexity and non-stationary of rainfall data,it is difficult ...Rainfall forecasting is becoming more and more significant and precipitation anomalies would lead to droughts and floods disasters.However,because of the complexity and non-stationary of rainfall data,it is difficult to forecast.In this paper,a novel hybrid model to forecast rainfall is developed by incorporating singular spectrum analysis (SSA) and dragonfly algorithm (DA) into support vector regression (SVR) method.Firstly,SSA is used for extracting the trend components of the hydrological data.Then,SVR is utilized to deal with the volatility and irregularity of the precipitation series.Finally,the parameter of SVR is optimized by DA.The proposed SSA-DA-SVR method is used to forecast the monthly precipitation for Songbai,Panshui,Lanma and Jiulongchi stations.To validate the efficiency of the method,four compared models,DA-SVR,SSA-GWO-SVR,SSA-PSO-SVR and SSA-CS-SVR are established.The result shows that the proposed method has the best performance among all five models,and its prediction has high precision and accuracy.展开更多
Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence t...Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.展开更多
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per...An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.展开更多
The level of present understanding of earthquake prediction of seismologists at home and abroad is very different. This is because China has opened up a special path of earthquake prediction research that has not been...The level of present understanding of earthquake prediction of seismologists at home and abroad is very different. This is because China has opened up a special path of earthquake prediction research that has not been explored by other countries, with its own advantages and potentialities.Therefore, we considered that it is the most practical way to use the advantages and potentialities for raising the earthquake prediction level. For this purpose, we have developed a set of intelligent decision support system for earthquake prediction, with the analysis of cluster anomalies process at the core. The facts show that it can obviously raise the level of synthetic earthquake prediction.展开更多
<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process...<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be presented. An example will be given for illustrating the development of the tool.</span>展开更多
This paper describes a simulation-based intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS) with machine and tool flexibility. The manufacturing processes involved...This paper describes a simulation-based intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS) with machine and tool flexibility. The manufacturing processes involved in FMS are complicated since each operation may be done by several machining centers. The system design approach is built around the theory of dynamic supervisory control based on a rule-based expert system. The paper considers flexibility in operation assignment and scheduling of multi-purpose machining centers which have different tools with their own efficiency. The architecture of the proposed controller consists of a simulator module coordinated with an IDSS via a real time event handler for implementing inter-process synchronization. The controller’s performance is validated by benchmark test problem.展开更多
The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonc...The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonczek, while the architecture is a rooted partial order network. From our experience which comes out of the project of DSSG, we consider that they are keys of further research and development of DSS.展开更多
New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-...New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.展开更多
Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identi...Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.展开更多
Properties prediction of crude oil remains an essential issue for refineries. In this communication, an exhaustive and extendable support vector machine(SVM) intelligent prediction process has been proposed to solve t...Properties prediction of crude oil remains an essential issue for refineries. In this communication, an exhaustive and extendable support vector machine(SVM) intelligent prediction process has been proposed to solve this problem. A novel hybrid genetic algorithm-particle swarm optimization(GA-PSO)method was applied to optimize the SVM model. The optimization process and result demonstrated that the newly proposed GA-PSO-SVM method was more accurate and time-saving than the classical GA or PSO method. Compared with the classical Grid-search SVM, the combined GA-PSO-SVM model appeared to be more applicable for the properties prediction task. The TBP distillation curve fitting was exampled to evaluate the performance of the developed model. The regression result demonstrated the high accuracy and efficiency of the proposed process. The model can be applied in the Industrial Internet as a plugin, and the adaptability and flexibility is demonstrated by the implement of crude oil molecular reconstruction employing the intelligent prediction process.展开更多
基金This research is SHpported by National Science Foundation of China under Grant No.70572038State Key Laboratory of Mechanical Manufacturing System Engineering Hnder the research grant of 2006~2007
文摘Case-based reasoning (CBR) is an important reasoning technique of expert system. In this paper, the authors introduce CBR to intelligent early-warning support system, which could warn quantitatively for enterprise financial crisis and could warn qualitatively by expert's knowledge and experience. Furthermore, genetic algorithm is applied to case-based reasoning in CBR-IEWSS, which improves accuracy and efficiency of case retrieval. Last, the structure of CBR-IEWSS is given.
文摘In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.
文摘This paper describes the structure and function of the intelligent decision support system (IDSS) on the process of nickel matte smelter. The knowledge and model base system based on fuzzy-decision rules ale specially suggested. The IDSS possesses the self-learning and adaptive properties, andhas been used for managing and analyzing the production information, optimizing the composition of the charge mixture, and deciding the optimal operational conditions. Electric energy consumption has been reduced remarkably and the yield of nickel has been increased.
文摘Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R194)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods.
基金the National Natural Science Fund of China(Approved No.79779986)
文摘Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.
文摘Multiple objects decision is used widely in many complex fields. In this paper an idea is provided to construct a train diagram intelligent multiple objects decision support system (TDIMODSS). And the reference point method is used to solve the complicated and large scale problems of making and adjusting train schedule. This paper focuses on the principle and framework of the model base, knowledge base of train diagram. It is shown that the TDIMODSS can solve the problems and their uncertainty in making train diagram, and can combine the expert knowledge, experience and judgement of a decision maker into the system. In addition to that, a friendly working environment is also presented, which brings together the human judgement, the adaptability to environment and the computerised information.
文摘Rainfall forecasting is becoming more and more significant and precipitation anomalies would lead to droughts and floods disasters.However,because of the complexity and non-stationary of rainfall data,it is difficult to forecast.In this paper,a novel hybrid model to forecast rainfall is developed by incorporating singular spectrum analysis (SSA) and dragonfly algorithm (DA) into support vector regression (SVR) method.Firstly,SSA is used for extracting the trend components of the hydrological data.Then,SVR is utilized to deal with the volatility and irregularity of the precipitation series.Finally,the parameter of SVR is optimized by DA.The proposed SSA-DA-SVR method is used to forecast the monthly precipitation for Songbai,Panshui,Lanma and Jiulongchi stations.To validate the efficiency of the method,four compared models,DA-SVR,SSA-GWO-SVR,SSA-PSO-SVR and SSA-CS-SVR are established.The result shows that the proposed method has the best performance among all five models,and its prediction has high precision and accuracy.
文摘Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.
文摘An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times.
基金This research is one of the key projects No. 863-306-04-03-4 in the State High Science-Technology Program (Program 863), China.
文摘The level of present understanding of earthquake prediction of seismologists at home and abroad is very different. This is because China has opened up a special path of earthquake prediction research that has not been explored by other countries, with its own advantages and potentialities.Therefore, we considered that it is the most practical way to use the advantages and potentialities for raising the earthquake prediction level. For this purpose, we have developed a set of intelligent decision support system for earthquake prediction, with the analysis of cluster anomalies process at the core. The facts show that it can obviously raise the level of synthetic earthquake prediction.
文摘<span style="font-family:Verdana;">The covid pandemic points out inconsistencies and points to improve in the organization of healthcare logistics. Indeed, the dangerousness and the propagation process of the virus imply to increase health security (patient and personal health). In this context, healthcare logistics flows require a new and safety organization improving the hospital performance. The purpose of this paper consists in optimizing healthcare logistics flows by solving problems associated to the internal logistics such as reduction of the personal health wasting time and the protection of both patients and personal health. Then, the methodology corresponds to the use of the hospital sustainable digital transformation as a response to healthcare flows and safety problems. Indeed, social, societal and environmental aspects have to be considered in addition to new technologies such as artificial intelligence (AI), Internet of Things (IoTs), Big data and analytics. These parameters could be used in the healthcare for increasing doctor, nurse, caregiver performance during their daily operations, and patient satisfaction. Indeed, this hospital digital transformation requires the use of large data associated to patients and personal health, algorithms, a performance measurement tool (actual and future state) and a general approach for transforming digitally the hospital flows. The paper findings show that the healthcare logistics performance could be improved with a sustainable digital transformation methodology and an intelligent software tool. This paper aims to develop this healthcare logistics 4.0 methodology and to elaborate the intelligent support system. After an introduction presenting the common hospital flows and their main problems, a literature review will be detailed for showing how existing concepts could contribute to the elaboration of a structured methodology. The structure of the intelligent software tool for the healthcare digital transformation and the tool development processes will be presented. An example will be given for illustrating the development of the tool.</span>
文摘This paper describes a simulation-based intelligent decision support system (IDSS) for real time control of a flexible manufacturing system (FMS) with machine and tool flexibility. The manufacturing processes involved in FMS are complicated since each operation may be done by several machining centers. The system design approach is built around the theory of dynamic supervisory control based on a rule-based expert system. The paper considers flexibility in operation assignment and scheduling of multi-purpose machining centers which have different tools with their own efficiency. The architecture of the proposed controller consists of a simulator module coordinated with an IDSS via a real time event handler for implementing inter-process synchronization. The controller’s performance is validated by benchmark test problem.
文摘The focus of this paper is on a new concept framework and an architecture of an intelligent decision support syetem generator (DSSG). The framework results from a synthesis of two existing frameworks: Spragae and Bonczek, while the architecture is a rooted partial order network. From our experience which comes out of the project of DSSG, we consider that they are keys of further research and development of DSS.
基金supported by the National Key Research and Development Program of China (2019YFB1600800)。
文摘New energy vehicles(NEVs) are gaining wider acceptance as the transportation sector is developing more environmentally friendly and sustainable technology. To solve problems of complex application scenarios and multi-sources heterogenous data for new energy vehicles and weak platform scalability,the framework of an intelligent decision support platform is proposed in this paper. The principle of software and hardware system is introduced. Hadoop is adopted as the software system architecture of the platform. Master-standby redundancy and dual-line redundancy ensure the reliability of the hardware system. In addition, the applications on the intelligent decision support platform in usage patterns recognition, energy consumption, battery state of health and battery safety analysis are also described.
基金The authors would like to confirm that this research work was funded by Institutional Fund Projects under Grant No.(IFPIP:646-829-1443)。
文摘Lung cancer is the leading cause of cancer-related death around the globe.The treatment and survival rates among lung cancer patients are significantly impacted by early diagnosis.Most diagnostic techniques can identify and classify only one type of lung cancer.It is crucial to close this gap with a system that detects all lung cancer types.This paper proposes an intelligent decision support system for this purpose.This system aims to support the quick and early detection and classification of all lung cancer types and subtypes to improve treatment and save lives.Its algorithm uses a Convolutional Neural Network(CNN)tool to perform deep learning and a Random Forest Algorithm(RFA)to help classify the type of cancer present using several extracted features,including histograms and energy.Numerous simulation experiments were conducted on MATLAB,evidencing that this system achieves 98.7%accuracy and over 98%precision and recall.A comparative assessment assessing accuracy,recall,precision,specificity,and F-score between the proposed algorithm and works from the literature shows that the proposed system in this study outperforms existing methods in all considered metrics.This study found that using CNNs and RFAs is highly effective in detecting lung cancer,given the high accuracy,precision,and recall results.These results lead us to believe that bringing this kind of technology to doctors diagnosing lung cancer is critical.
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘Properties prediction of crude oil remains an essential issue for refineries. In this communication, an exhaustive and extendable support vector machine(SVM) intelligent prediction process has been proposed to solve this problem. A novel hybrid genetic algorithm-particle swarm optimization(GA-PSO)method was applied to optimize the SVM model. The optimization process and result demonstrated that the newly proposed GA-PSO-SVM method was more accurate and time-saving than the classical GA or PSO method. Compared with the classical Grid-search SVM, the combined GA-PSO-SVM model appeared to be more applicable for the properties prediction task. The TBP distillation curve fitting was exampled to evaluate the performance of the developed model. The regression result demonstrated the high accuracy and efficiency of the proposed process. The model can be applied in the Industrial Internet as a plugin, and the adaptability and flexibility is demonstrated by the implement of crude oil molecular reconstruction employing the intelligent prediction process.
基金supported by the National High Technology Research and Development Program(863 program)of China(2012AA101906-2)the National Natural Science Foundation of China(3140030594)