Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can h...Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.展开更多
Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low e...Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low education efficiency and students’weak initiative.Recent developments of sensing fabric and embedded computing,along with the advances in artificial intelligence(AI)and digital twin technology are paving the way for the transformation of medical research towards digitization.In this work,we present an intelligent fabric space based on novel functional fabric materials and digital twin networking enabled by 5G and internet of things(IoT)technologies.In this space,medical students can learn knowledge with collaborative mapping of the digital and real world,cyber-physical interaction and real-time tactile feedback.And the proposed service system will evaluate and feedback students’operational behaviors to improve their experimental skills.We provide four typical applications of intelligent fabric space for medical education,including medical education training,health and behavior tracking,operation playback and reproduction,as well as medical knowledge popularization.The proposed intelligent fabric space has the potential to promote innovative technologies for training cutting-edge medical students by effective and efficient ways.展开更多
Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a ne...Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.展开更多
Composite biomaterials with controllable mi- crostructures play an increasingly important role in tissue engineering and regenerative medicine. Here, we report a magnetic hydrogel composite with disk-like microstructu...Composite biomaterials with controllable mi- crostructures play an increasingly important role in tissue engineering and regenerative medicine. Here, we report a magnetic hydrogel composite with disk-like microstructure fabricated by assembly of iron oxide nanopartides during the gelation process in the presence of rotating magnetic field. It should be mentioned that the iron oxide nanoparticles here were synthesized identically following techniques of Fer- umoxytol that is the only inorganic nanodrug approved by FDA for clinical applications. The microstructure of nano- particles inside the hydrogel was ordered three-dimensionally due to the twist of the aligned chains of magnetic nano- particles which leads to the lowest state of systematic energy. The size of microstructure can be tuned from several micro- meters to tens of micrometers by changing the assembly parameters. With the increase of microstructure size, the magnetothermal anisotropy was also augmented. This result confirmed that the assembly-induced anisotropy can occur even for the several micron aggregates of nanopartides. The rotating magnetic field-assisted technique is cost-effective, simple and flexible for the fabrication of composite hydrogel with ordered microstructure. We believe it will be favorable for the quick, green and intelligent fabrication of some com- posite materials.展开更多
Flexible and wearable electronics represent paramount technologies ofering revolutionized solutions for medical diagnosis and therapy,nerve and organ interfaces,fabric computation,robot-in-medicine and metaverse.Being...Flexible and wearable electronics represent paramount technologies ofering revolutionized solutions for medical diagnosis and therapy,nerve and organ interfaces,fabric computation,robot-in-medicine and metaverse.Being ubiquitous in everyday life,piezoelectric materials and devices play a vital role in fexible and wearable electronics with their intriguing functionalities,including energy harvesting,sensing and actuation,personal health care and communications.As a new emerging fexible and wearable technology,fber-shaped piezoelectric devices ofer unique advantages over conventional thin-flm counterparts.In this review,we survey the recent scientifc and technological breakthroughs in thermally drawn piezoelectric fbers and fber-enabled intelligent fabrics.We highlight the fber materials,fber architecture,fabrication,device integration as well as functions that deliver higher forms of unique applications across smart sensing,health care,space security,actuation and energy domains.We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this feld.展开更多
文摘Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.
基金supported by the National Natural Science Foundation of China(62175082 and 61875064).
文摘Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low education efficiency and students’weak initiative.Recent developments of sensing fabric and embedded computing,along with the advances in artificial intelligence(AI)and digital twin technology are paving the way for the transformation of medical research towards digitization.In this work,we present an intelligent fabric space based on novel functional fabric materials and digital twin networking enabled by 5G and internet of things(IoT)technologies.In this space,medical students can learn knowledge with collaborative mapping of the digital and real world,cyber-physical interaction and real-time tactile feedback.And the proposed service system will evaluate and feedback students’operational behaviors to improve their experimental skills.We provide four typical applications of intelligent fabric space for medical education,including medical education training,health and behavior tracking,operation playback and reproduction,as well as medical knowledge popularization.The proposed intelligent fabric space has the potential to promote innovative technologies for training cutting-edge medical students by effective and efficient ways.
基金support from the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program(No.TC220H06N)and the National Natural Science Foundation of China(Nos.U20A20131 and 22209193).
文摘Multifunctional intelligent fabric plays an integral role in health management,human–machine interaction,wireless energy storage and conversion,and many other artificial intelligence fields.Herein,we demonstrate a newly developed MXene/polyaniline(PANI)multifunctional fabric integrated with strain sensing,electrochemical energy storage,and electromagnetic shielding properties.The multifunctional fabric-based strain sensor possesses a real-time signal response at a sizeable tensile strain of 100%with a minute strain of 0.5%,maintaining a stable and consistent signal response even after 3000 stretch–release cycles.In addition,the multifunctional fabric exhibits excellent electromagnetic shielding capabilities,achieving a total shielding effectiveness value of up to 43 dB,and in the meantime shows attractive electrochemical energy storage performance as an electrode in a supercapacitor,offering a maximum specific capacity and energy density of 522.5 mF·cm^(−2)and 18.16μWh·cm^(−2),respectively.Such a multifunctional intelligent fabric offers versatile opportunities to develop smart clothes for various artificial intelligent applications.
基金supported by the National Key Research and Development Program of China(2017YFA0104301)the Fundamental Research Funds for the Central Universitiesthe supports from Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Composite biomaterials with controllable mi- crostructures play an increasingly important role in tissue engineering and regenerative medicine. Here, we report a magnetic hydrogel composite with disk-like microstructure fabricated by assembly of iron oxide nanopartides during the gelation process in the presence of rotating magnetic field. It should be mentioned that the iron oxide nanoparticles here were synthesized identically following techniques of Fer- umoxytol that is the only inorganic nanodrug approved by FDA for clinical applications. The microstructure of nano- particles inside the hydrogel was ordered three-dimensionally due to the twist of the aligned chains of magnetic nano- particles which leads to the lowest state of systematic energy. The size of microstructure can be tuned from several micro- meters to tens of micrometers by changing the assembly parameters. With the increase of microstructure size, the magnetothermal anisotropy was also augmented. This result confirmed that the assembly-induced anisotropy can occur even for the several micron aggregates of nanopartides. The rotating magnetic field-assisted technique is cost-effective, simple and flexible for the fabrication of composite hydrogel with ordered microstructure. We believe it will be favorable for the quick, green and intelligent fabrication of some com- posite materials.
基金supported by Nanyang Technological University(021850-00001:Wei Yan)the National Natural Science Foundation of China(Grant No.52202167).
文摘Flexible and wearable electronics represent paramount technologies ofering revolutionized solutions for medical diagnosis and therapy,nerve and organ interfaces,fabric computation,robot-in-medicine and metaverse.Being ubiquitous in everyday life,piezoelectric materials and devices play a vital role in fexible and wearable electronics with their intriguing functionalities,including energy harvesting,sensing and actuation,personal health care and communications.As a new emerging fexible and wearable technology,fber-shaped piezoelectric devices ofer unique advantages over conventional thin-flm counterparts.In this review,we survey the recent scientifc and technological breakthroughs in thermally drawn piezoelectric fbers and fber-enabled intelligent fabrics.We highlight the fber materials,fber architecture,fabrication,device integration as well as functions that deliver higher forms of unique applications across smart sensing,health care,space security,actuation and energy domains.We conclude with a critical analysis of existing challenges and opportunities that will be important for the continued progress of this feld.