The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extra...The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.展开更多
Because the single channel surface electromyographic (sEMG) signals easily caused a complex operation during the real-time operation, an intelligent wheelchair system based on sEMG and head gesture was proposed in t...Because the single channel surface electromyographic (sEMG) signals easily caused a complex operation during the real-time operation, an intelligent wheelchair system based on sEMG and head gesture was proposed in this paper. A distributed parallelly decision fusion algorithm fused classification results of the two signals to form a final judgment. After sEMG was decomposed by wavelet packet, feature information of some subspace was weaken, because subspace dimension was very large. To solve the problem, the paper proposed an improved wavelet packet decomposition algorithm, which extracted sample entropy from four subspaces of improved wavelet packet decomposition and took it as the feature information. Experimental results show that the intelligent wheelchair system based on sEMG and head gesture has not only a simple operation and shorter operating time, but also a better stability and security.展开更多
Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization o...Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization of reentry guidance problems and the optimization of parameters.First,a quintic polynomial function of energy was designed to describe the altitude profile.Then,according to the altitude-energy profile,the altitude,velocity,flight path angle,and bank angle were obtained analytically,which naturally met the terminal constraints.In addition,the angle of the attack profile was determined using the velocity parameter.The swarm intelligent optimization algorithms were used to optimize the parameters.The path constraints were enforced by the penalty function method.Finally,extensive simulations were carried out in both nominal and dispersed cases,and the simulation results showed that the proposed guidance framework was effective,high-precision,and robust in different scenarios.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51175511,61472444)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20150724)Pre-study Foundation of PLA University of Science and Technology,China(Grant No.KYGYZL139)
文摘The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults.
基金supported by the International Cooperation Project of Ministry of Science and Technology (2010DFA12160)
文摘Because the single channel surface electromyographic (sEMG) signals easily caused a complex operation during the real-time operation, an intelligent wheelchair system based on sEMG and head gesture was proposed in this paper. A distributed parallelly decision fusion algorithm fused classification results of the two signals to form a final judgment. After sEMG was decomposed by wavelet packet, feature information of some subspace was weaken, because subspace dimension was very large. To solve the problem, the paper proposed an improved wavelet packet decomposition algorithm, which extracted sample entropy from four subspaces of improved wavelet packet decomposition and took it as the feature information. Experimental results show that the intelligent wheelchair system based on sEMG and head gesture has not only a simple operation and shorter operating time, but also a better stability and security.
基金co-supported by the National Natural Science Foundation of China(No.61773387)Tianjin Natural Science Foundation,China(No.20JCYBJC00880)。
文摘Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization of reentry guidance problems and the optimization of parameters.First,a quintic polynomial function of energy was designed to describe the altitude profile.Then,according to the altitude-energy profile,the altitude,velocity,flight path angle,and bank angle were obtained analytically,which naturally met the terminal constraints.In addition,the angle of the attack profile was determined using the velocity parameter.The swarm intelligent optimization algorithms were used to optimize the parameters.The path constraints were enforced by the penalty function method.Finally,extensive simulations were carried out in both nominal and dispersed cases,and the simulation results showed that the proposed guidance framework was effective,high-precision,and robust in different scenarios.