期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Intelligent Diagnosis of Short Hydraulic Signal Based on Improved EEMD and SVM with Few Low-dimensional Training Samples 被引量:10
1
作者 ZHANG Meijun TANG Jian +1 位作者 ZHANG Xiaoming ZHANG Jiaojiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期396-405,共10页
The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extra... The high accurate classification ability of an intelligent diagnosis method often needs a large amount of training samples with high-dimensional eigenvectors, however the characteristics of the signal need to be extracted accurately. Although the existing EMD(empirical mode decomposition) and EEMD(ensemble empirical mode decomposition) are suitable for processing non-stationary and non-linear signals, but when a short signal, such as a hydraulic impact signal, is concerned, their decomposition accuracy become very poor. An improve EEMD is proposed specifically for short hydraulic impact signals. The improvements of this new EEMD are mainly reflected in four aspects, including self-adaptive de-noising based on EEMD, signal extension based on SVM(support vector machine), extreme center fitting based on cubic spline interpolation, and pseudo component exclusion based on cross-correlation analysis. After the energy eigenvector is extracted from the result of the improved EEMD, the fault pattern recognition based on SVM with small amount of low-dimensional training samples is studied. At last, the diagnosis ability of improved EEMD+SVM method is compared with the EEMD+SVM and EMD+SVM methods, and its diagnosis accuracy is distinctly higher than the other two methods no matter the dimension of the eigenvectors are low or high. The improved EEMD is very propitious for the decomposition of short signal, such as hydraulic impact signal, and its combination with SVM has high ability for the diagnosis of hydraulic impact faults. 展开更多
关键词 hydraulic impact fault improved EEMD end effect overshoot-undershoot SVM intelligent fault diagnosis short signal
下载PDF
Intelligent wheelchair system based on s EMG and head gesture 被引量:1
2
作者 Zhang Yi Feng Xiaolin Luo Yuan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第2期74-80,95,共8页
Because the single channel surface electromyographic (sEMG) signals easily caused a complex operation during the real-time operation, an intelligent wheelchair system based on sEMG and head gesture was proposed in t... Because the single channel surface electromyographic (sEMG) signals easily caused a complex operation during the real-time operation, an intelligent wheelchair system based on sEMG and head gesture was proposed in this paper. A distributed parallelly decision fusion algorithm fused classification results of the two signals to form a final judgment. After sEMG was decomposed by wavelet packet, feature information of some subspace was weaken, because subspace dimension was very large. To solve the problem, the paper proposed an improved wavelet packet decomposition algorithm, which extracted sample entropy from four subspaces of improved wavelet packet decomposition and took it as the feature information. Experimental results show that the intelligent wheelchair system based on sEMG and head gesture has not only a simple operation and shorter operating time, but also a better stability and security. 展开更多
关键词 SEMG head gesture decision fusion improved wavelet packet intelligent wheelchair
原文传递
Analytical reentry guidance framework based on swarm intelligence optimization and altitude-energy profile
3
作者 Hui XU Guangbin CAI +1 位作者 Chaoxu MU Xin LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期336-348,共13页
Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization o... Aimed at improving the real-time performance of guidance instruction generation,an analytical hypersonic reentry guidance framework is presented.The key steps of the novel guidance framework are the parameterization of reentry guidance problems and the optimization of parameters.First,a quintic polynomial function of energy was designed to describe the altitude profile.Then,according to the altitude-energy profile,the altitude,velocity,flight path angle,and bank angle were obtained analytically,which naturally met the terminal constraints.In addition,the angle of the attack profile was determined using the velocity parameter.The swarm intelligent optimization algorithms were used to optimize the parameters.The path constraints were enforced by the penalty function method.Finally,extensive simulations were carried out in both nominal and dispersed cases,and the simulation results showed that the proposed guidance framework was effective,high-precision,and robust in different scenarios. 展开更多
关键词 Analytical solution Hypersonic glide vehicle Improved swarm intelligent optimization Monte-Carlo simulation Reentry guidance method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部