An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is...An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.展开更多
An effective modeling method of domain level constraints in the constraint network for concurrent engineering (CE) was developed. The domain level constraints were analyzed and the framework of modeling of domain leve...An effective modeling method of domain level constraints in the constraint network for concurrent engineering (CE) was developed. The domain level constraints were analyzed and the framework of modeling of domain level constraints based on simulation and approximate technology was given. An intelligent response surface methodology (IRSM) was proposed, in which artificial intelligence technologies are introduced into the optimization process. The design of crank and connecting rod in the V6 engine as example was given to show the validity of the modeling method.展开更多
文摘An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.
文摘An effective modeling method of domain level constraints in the constraint network for concurrent engineering (CE) was developed. The domain level constraints were analyzed and the framework of modeling of domain level constraints based on simulation and approximate technology was given. An intelligent response surface methodology (IRSM) was proposed, in which artificial intelligence technologies are introduced into the optimization process. The design of crank and connecting rod in the V6 engine as example was given to show the validity of the modeling method.