期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Zero-Watermarking for Medical Image in Intelligent Sensor Network Security
1
作者 Shixin Tu Yuanyuan Jia +1 位作者 Jinglong Du Baoru Han 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期293-321,共29页
The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot ... The field of healthcare is considered to be the most promising application of intelligent sensor networks.However,the security and privacy protection ofmedical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention.Fortunately,digital watermarking provides an effective method to solve this problem.In order to improve the robustness of the medical image watermarking scheme,in this paper,we propose a novel zero-watermarking algorithm with the integer wavelet transform(IWT),Schur decomposition and image block energy.Specifically,we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,then we decompose the sub-blocks by Schur decomposition.After that,the feature matrix is constructed according to the relationship between the image block energy and the whole image energy.At the same time,we encrypt watermarking with the logistic chaotic position scrambling.Finally,the zero-watermarking is obtained by XOR operation with the encrypted watermarking.Three indexes of peak signal-to-noise ratio,normalization coefficient(NC)and the bit error rate(BER)are used to evaluate the robustness of the algorithm.According to the experimental results,most of the NC values are around 0.9 under various attacks,while the BER values are very close to 0.These experimental results show that the proposed algorithm is more robust than the existing zero-watermarking methods,which indicates it is more suitable for medical image privacy and security protection. 展开更多
关键词 intelligent sensor network medical image ZERO-WATERMARKING integer wavelet transform schur decomposition
下载PDF
Sonar Image Target Detection for Underwater Communication System Based on Deep Neural Network
2
作者 Lilan Zou Bo Liang +2 位作者 Xu Cheng Shufa Li Cong Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2641-2659,共19页
Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and mo... Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and model detection performance is degraded due to the complex imaging environment,we proposed a more effective and robust target detection framework based on deep learning,which can make full use of the acoustic shadow information in the forward-looking sonar images to assist underwater target detection.Firstly,the weighted box fusion method is adopted to generate a fusion box by weighted fusion of prediction boxes with high confidence,so as to obtain accurate acoustic shadow boxes.Further,the acoustic shadow box is cut down to get the feature map containing the acoustic shadow information,and then the acoustic shadow feature map and the target information feature map are adaptively fused to make full use of the acoustic shadow feature information.In addition,we introduce a threshold processing module to improve the attention of the model to important feature information.Through the underwater sonar dataset provided by Pengcheng Laboratory,the proposed method improved the average accuracy by 3.14%at the IoU threshold of 0.7,which is better than the current traditional target detection model. 展开更多
关键词 Underwater communication intelligent sensor network target detection weighted frame fusion shadow information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部