双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因...双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。展开更多
开放电力市场环境下,以配电网公司的净收益最大为目标,建立了考虑运行策略及投资主体利益的电池储能系统(battery energy storage system,BESS)优化配置模型。配电网公司的净收益由在大量用户自建分布式电源的主动配电网中投资建设BESS...开放电力市场环境下,以配电网公司的净收益最大为目标,建立了考虑运行策略及投资主体利益的电池储能系统(battery energy storage system,BESS)优化配置模型。配电网公司的净收益由在大量用户自建分布式电源的主动配电网中投资建设BESS的经济效益以及计入考虑循环寿命的BESS全寿命周期成本决定。其中,经济收益分为正常状态下的收益和系统故障过程的收益。同时通过设定追踪价格的上下限和最小的电池荷电状态,提出一种新的确定BESS运行策略的方法。优选智能单粒子群算法对该模型进行求解。以改进IEEE-33节点配电系统为例进行仿真验证,结果表明与固定的BESS运行策略相比,采用所提策略可获得更优的经济性,DG的类型与渗透率的大小对BESS的最优配置结果及经济收益有较大影响。展开更多
In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability impro...In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability improvement benefit of BESS is considered and a numerical calculation method based on expectation is proposed for simple and convenient calculation of system reliability improvement with BESS in planning phase. Decision variables include both configuration variables and operation strategy control variables. In order to prevent the interaction between two types of variables and enhance global search ability, intelligent single particle optimizer(ISPO) is adopted to optimize this model. Case studies on a modified IEEE benchmark system verified the performance of the proposed operation strategy and optimal planning model of BESS.展开更多
文摘双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。
文摘开放电力市场环境下,以配电网公司的净收益最大为目标,建立了考虑运行策略及投资主体利益的电池储能系统(battery energy storage system,BESS)优化配置模型。配电网公司的净收益由在大量用户自建分布式电源的主动配电网中投资建设BESS的经济效益以及计入考虑循环寿命的BESS全寿命周期成本决定。其中,经济收益分为正常状态下的收益和系统故障过程的收益。同时通过设定追踪价格的上下限和最小的电池荷电状态,提出一种新的确定BESS运行策略的方法。优选智能单粒子群算法对该模型进行求解。以改进IEEE-33节点配电系统为例进行仿真验证,结果表明与固定的BESS运行策略相比,采用所提策略可获得更优的经济性,DG的类型与渗透率的大小对BESS的最优配置结果及经济收益有较大影响。
文摘In this paper, a cost-benefit analysis based optimal planning model of battery energy storage system(BESS) in active distribution system(ADS) is established considering a new BESS operation strategy. Reliability improvement benefit of BESS is considered and a numerical calculation method based on expectation is proposed for simple and convenient calculation of system reliability improvement with BESS in planning phase. Decision variables include both configuration variables and operation strategy control variables. In order to prevent the interaction between two types of variables and enhance global search ability, intelligent single particle optimizer(ISPO) is adopted to optimize this model. Case studies on a modified IEEE benchmark system verified the performance of the proposed operation strategy and optimal planning model of BESS.